CHARACTERISATION OF EGG WHITE-IMPREGNATED ACTIVATED CARBON FOR CO2 ADSORPTION APPLICATION
Main Article Content
Abstract
In this study egg white was used as a source of natural amino acids to modify the surface properties of palm shell activated carbon towards enhancing its CO2 capture performance. A simple impregnation method was employed for this purpose. Characterisation analysis was performed on the egg white-impregnated activated carbon to examine any changes on its surface properties prior to CO2 adsorption test. The modified adsorbent showed high thermal stability below 300°C and comprised of new amide functional group. Furthermore, the modified adsorbent exhibited 31% higher breakthrough time and maintained its CO2 adsorption capacity at 0.3 mmol/g in comparison to raw activated carbon, regardless of the reduction of surface area and micropore volume by 17% and 18% respectively. These findings provide evidence on the prospect of egg white-impregnated activated carbon for CO2 adsorption application which could pave the way for a new generation of affordable and eco-friendly adsorbents.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Abdul Rani, N. H., & Muda, N. (2017). Impregnated Palm Kernel Shell Activated Carbon for CO2 Adsorption by Pressure Swing Adsorption. Indian Journal of Science and Technology, 10. https://doi.org/10.17485/ijst/2017/v10i2/110377
Allangawi, A., Alzaimoor, E. F. H., Shanaah, H. H., Mohammed, H. A., Saqer, H., El-Fattah, A. A., & Kamel, A. H. (2023). Carbon Capture Materials in Post-Combustion: Adsorption and Absorption-Based Processes. C, 9(1), 17. https://doi.org/10.3390/c9010017
Balsamo, M., Erto, A., Lancia, A., Totarella, G., Montagnaro, F., & Turco, R. (2018). Post-combustion CO2 capture: On the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids. Fuel, 218, 155-161. https://doi.org/10.1016/j.fuel.2018.01.038
Chen, Y.-S., Ooi, C. W., Show, P. L., Hoe, B. C., Chai, W. S., Chiu, C.-Y., . . . Chang, Y.-K. (2022). Removal of Ionic Dyes by Nanofiber Membrane Functionalized with Chitosan and Egg White Proteins: Membrane Preparation and Adsorption Efficiency. Membranes, 12(1), 63. https://doi.org/10.3390/membranes12010063
U.S. EPA. (2023). Global Greenhouse Gas Emissions Data https://www.epa.gov/ghgemissions/global-greenhouse-gas-emissions-data (accessed August 28, 2023).
Gabelman, A. (2017). Adsorption Basics: Part 1. Chemical Engineering Progress. https://www.aiche.org/resources/publications/cep/2017/july/adsorption-basics-part-1 (accessed July 4, 2023)
Gholidoust, A., Atkinson, J. D., & Hashisho, Z. (2017). Enhancing CO2 Adsorption via Amine-Impregnated Activated Carbon from Oil Sands Coke. Energy & Fuels, 31(2), 1756-1763. https://doi.org/10.1021/acs.energyfuels.6b02800
Gil-Lalaguna, N., Navarro-Gil, Á., Carstensen, H.-H., Ruiz, J., Fonts, I., Ceamanos, J., . . . Gea, G. (2022). CO2 adsorption on pyrolysis char from protein-containing livestock waste: How do proteins affect? Science of The Total Environment, 846, 157395. https://doi.org/10.1016/j.scitotenv.2022.157395
Imtiaz-Ul-Islam, M., Hong, L., & Langrish, T. (2011). CO2 capture using whey protein isolate. Chemical Engineering Journal, 171(3), 1069-1081. https://doi.org/10.1016/j.cej.2011.05.003
Jahandar Lashaki, M., Khiavi, S., & Sayari, A. (2019). Stability of amine-functionalized CO2 adsorbents: a multifaceted puzzle. Chemical Society Reviews, 48(12), 3320-3405. https://doi.org/10.1039/C8CS00877A
Kaur, B., Gupta, R. K., & Bhunia, H. (2019). Chemically activated nanoporous carbon adsorbents from waste plastic for CO2 capture: Breakthrough adsorption study. Microporous and Mesoporous Materials, 282, 146-158. https://doi.org/10.1016/j.micromeso.2019.03.025
Ketabchi, M. R., Babamohammadi, S., Davies, W. G., Gorbounov, M., & Masoudi Soltani, S. (2023). Latest advances and challenges in carbon capture using bio-based sorbents: A state-of-the-art review. Carbon Capture Science & Technology, 6, 100087. https://doi.org/10.1016/j.ccst.2022.100087
Khan, U., Ogbaga, C. C., Abiodun, O.-A. O., Adeleke, A. A., Ikubanni, P. P., Okoye, P. U., & Okolie, J. A. (2023). Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Science & Technology, 8, 100125. https://doi.org/10.1016/j.ccst.2023.100125
Le Quéré, C., Jackson, R. B., Jones, M. W., Smith, A. J. P., Abernethy, S., Andrew, R. M., . . . Peters, G. P. (2020). Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 10(7), 647-653. https://doi.org/10.1038/s41558-020-0797-x
Ligero, A., Calero, M., Martín-Lara, M. Á., Blázquez, G., Solís, R. R., & Pérez, A. (2023). Fixed-bed CO2 adsorption onto activated char from the pyrolysis of a non-recyclable plastic mixture from real urban residues. Journal of CO2 Utilization, 73, 102517. https://doi.org/10.1016/j.jcou.2023.102517
Lu, Y.-R., Chen, H.-C., Liu, K., Liu, M., Chan, T.-S., & Hung, S.-F. (2022). Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustainable Chemistry & Engineering, 10(20), 6736-6742. https://doi.org/10.1021/acssuschemeng.2c00878
Mohamed Hatta, N. S., Hussin, F., Gew, L. T., & Aroua, M. K. (2023). Enhancing surface functionalization of activated carbon using amino acids from natural source for CO2 capture. Separation and Purification Technology, 313, 123468. https://doi.org/10.1016/j.seppur.2023.123468
Nazir, G., Rehman, A., Hussain, S., Mahmood, Q., Fteiti, M., Heo, K., . . . Aizaz Ud Din, M. (2023). Towards a sustainable conversion of biomass/biowaste to porous carbons for CO2 adsorption: recent advances, current challenges, and future directions. Green Chemistry, 25(13), 4941-4980. https://doi.org/10.1039/D3GC00636K
Parker, F. S. (1971). Amides and Amines. In F. S. Parker (Ed.), Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine (pp. 165-172). Springer US. https://doi.org/10.1007/978-1-4684-1872-9_8
Philip, F. A., & Henni, A. (2023). Incorporation of Amino Acid-Functionalized Ionic Liquids into Highly Porous MOF-177 to Improve the Post-Combustion CO2 Capture Capacity. Molecules, 28(20), 7185. https://doi.org/10.3390/molecules28207185
Rasmussen, C. (2021). Emission Reductions From Pandemic Had Unexpected Effects on Atmosphere https://www.jpl.nasa.gov/news/emission-reductions-from-pandemic-had-unexpected-effects-on-atmosphere (accessed August 28, 2023)
Rugayah, A. F. A., A A; Norzita, N. (2014). Preparation and Characterisation of Activated Carbon from Palm Kernel Shell by Physical Activation with Steam. Journal of Oil Palm Research, 26(3), 251-264.
Saha, D., & Kienbaum, M. J. (2019). Role of oxygen, nitrogen and sulfur functionalities on the surface of nanoporous carbons in CO2 adsorption: A critical review. Microporous and Mesoporous Materials, 287, 29-55. https://doi.org/10.1016/j.micromeso.2019.05.051
Sashina, E. S., Golubikhin, A. Y., & Susanin, A. I. (2015). Prospects for Producing New Biomaterials Based on Fibroin. Fibre Chemistry, 47(4), 253-259. https://doi.org/10.1007/s10692-016-9675-8
Sharma, S., Kaur, M., Sharma, C., Choudhary, A., & Paul, S. (2021). Biomass-Derived Activated Carbon-Supported Copper Catalyst: An Efficient Heterogeneous Magnetic Catalyst for Base-Free Chan–Lam Coupling and Oxidations. ACS Omega, 6(30), 19529-19545. https://doi.org/10.1021/acsomega.1c01830
Shu Hui, T., & Ahmad Zaini, M. A. (2015). Potassium hydroxide activation of activated carbon: A commentary. Carbon Letters, 16, 275-280. https://doi.org/10.5714/CL.2015.16.4.275
Suhaili, N., Lim, L., Teh, L. P., Shahdan, S. N., & Manabu, Z. G. (2023). Effect of Arginine-Based Deep Eutectic Solvents on Supported Porous Sorbent for CO2. Sains Malaysiana, 52(5), 1419-1434. https://doi.org/10.17576/jsm-2023-5205-08
Vanda, H., Dai, Y., Wilson, E. G., Verpoorte, R., & Choi, Y. H. (2018). Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chimie, 21(6), 628-638. https://doi.org/10.1016/j.crci.2018.04.002
Wang, Q., Lei, L., Wang, F., Chen, C., Kang, X., Wang, C., . . . Chen, Z. (2020). Preparation of egg white@zeolitic imidazolate framework-8@polyacrylic acid aerogel and its adsorption properties for organic dyes. Journal of Solid State Chemistry, 292, 121656. https://doi.org/10.1016/j.jssc.2020.121656
You, C., & Kim, J. (2020). Quantitative risk assessment of an amine-based CO2 capture process. Korean Journal of Chemical Engineering, 37(10), 1649-1659. https://doi.org/10.1007/s11814-020-0567-5
Zhao, Y., Dong, Y., Guo, Y., Huo, F., Yan, F., & He, H. (2021). Recent progress of green sorbents-based technologies for low concentration CO2 capture. Chinese Journal of Chemical Engineering, 31, 113-125. https://doi.org/10.1016/j.cjche.2020.11.005
Zhu, Y., Fang, T., Hua, J., Qiu, S., Chu, H., Zou, Y., . . . Zeng, J.-L. (2019). Biomass-Derived Porous Carbon Prepared from Egg White for High-performance Supercapacitor Electrode Materials. ChemistrySelect, 4(24), 7358-7365. https://doi.org/10.1002/slct.201901632