MORINGA OLEIFERA (MO) SEED SHELL BASED ADSORBENT FOR POTENTIAL CO2 CAPTURE: A CHARACTERIZATION STUDY
Main Article Content
Abstract
This study characterizes activated carbon synthesized from Moringa oleifera (MO) seed husk with a greener activating agent, namely sodium carbonate, (Na2CO3) compared to traditional activating agent, potassium hydroxide (KOH). Synthesized in a conventional tube furnace with nitrogen supply, the resulting activated carbon after cooling and washing, were characterized for Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) analyses and compared with that produced with KOH activation. Although fewer and larger mesoporous activated carbon with smaller BET surface area (18.4659 m²/g) were formed with Na2CO3 activation), compared to that of KOH activation (235.6034 m²/g), this study highlights the ability and potential of the greener activating agent (Na2CO3) to utilize biomass waste and successfully produce activated carbon with minimum environmental hazards. The synthesized adsorbent can be explored for CO2 capture applications in future studies.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Abuelnoor N., AlHajaj, A., Khaleel M., Vega L. F. & Abu-Zahra M R M. (2021). Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere, 282(March), 131111, https://doi.org/10.1016/j.chemosphere.2021.131111.
Azmi A. A. & Aziz M. A. A. (2019). Mesoporous adsorbent for CO2 capture application under mild condition: A review. Journal of Environmental Chemical Engineering, 7(2), 103022, https://doi.org/10.1016/j.jece.2019.103022.
González-García P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews, 82(August 2017), 1393–1414, https://doi.org/10.1016/j.rser.2017.04.117.
Jawad A. H. & Abdulhameed A. S. (2020). Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecology and Environment, 5(6), 456–469, https://doi.org/10.1007/s40974-020-00177-z.
Khalfaoui A., Mahfouf E., Derbal K., Boukhaloua S., Chahbouni B. & Bouchareb R. (2022). Uptake of Methyl Red dye from aqueous solution using activated carbons prepared from Moringa Oleifera shells. 4(September), https://doi.org/10.1016/j.clce.2022.100069.
Nedjai R., Alkhatib M. F. R., Alam M. Z. & Kabbashi N. A. (2021). Adsorption Of Methylene Blue Onto Activated Carbon Developed From Baobab Fruit Shell By Chemical Activation: Kinetic Equilibrium Studies. IIUM Engineering Journal, 22(2), 31–49, https://doi.org/10.31436/iiumej.v22i2.1682.
Nguyen T. H., Kim S., Yoon M. & Bae T. H. (2016). Hierarchical Zeolites with Amine-Functionalized Mesoporous Domains for Carbon Dioxide Capture. ChemSusChem, 9(5), 455–461, https://doi.org/10.1002/cssc.201600004.
Prakash M. O., Raghavendra G., Ojha S. & Panchal M. (2020). Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method. Materials Today: Proceedings, 39(xxxx), 1476–1481, https://doi.org/10.1016/j.matpr.2020.05.370.
Prahas D., Kartika Y., Indraswati N. & Ismadji S. (2008). Activated carbon from jackfruit peel waste by H3PO4 chemical activation: Pore structure and surface chemistry characterization. Chemical Engineering Journal, 140(1–3), 32–42, https://doi.org/10.1016/j.cej.2007.08.032.
Raji Y., Nadi A., Mechnou I., Saadouni M., Cherkaoui O. & Zyade S. (2023). High adsorption capacities of crystal violet dye by low-cost activated carbon prepared from Moroccan Moringa oleifera wastes: Characterization, adsorption and mechanism study. Diamond and Related Materials, 135(February), 109834, https://doi.org/10.1016/j.diamond.2023.109834.
Santos T. M., de Jesus F. A., da Silva G. F. & Pontes L. A. M. (2020). Synthesis of activated carbon from oleifera moringa for removal of oils and greases from the produced water. Environmental Nanotechnology, Monitoring and Management, 14(August), https://doi.org/10.1016/j.enmm.2020.100357.
Serafin J., Ouzzine M., Cruz O. F., Sreńscek-Nazzal J., Campello Gómez I., Azar F. Z., Rey Mafull C. A., Hotza D. & Rambo C. R. (2021). Conversion of fruit waste-derived biomass to highly microporous activated carbon for enhanced CO2 capture. Waste Management, 136(October), 273–282, https://doi.org/10.1016/j.wasman.2021.10.025.
Sevilla M., Díez N. & Fuertes A. B. (2021). More Sustainable Chemical Activation Strategies for the Production of Porous Carbons. ChemSusChem, 14(1), 94–117, https://doi.org/10.1002/cssc.202001838.
Yamaguchi N. U., Cusioli L. F., Quesada H. B., Camargo Ferreira M. E., Fagundes-Klen M. R., Salcedo Vieira A. M., Gomes R. G., Vieira M. F. & Bergamasco R. (2021). A review of Moringa oleifera seeds in water treatment: Trends and future challenges. Process Safety and Environmental Protection, 147(September), 405–420, https://doi.org/10.1016/j.psep.2020.09.044.
Varma R. S. (2019). Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustainable Chemistry and Engineering, 7(7), 6458–6470, https://doi.org/10.1021/acssuschemeng.8b06550.
Vunain E. & Biswick T. (2019). Adsorptive removal of methylene blue from aqueous solution on activated carbon prepared from Malawian baobab fruit shell wastes: Equilibrium, kinetics and thermodynamic studies. Separation Science and Technology (Philadelphia), 54(1), 27–41, https://doi.org/10.1080/01496395.2018.1504794.
Zhang S., Zheng M., Tang Y., Zang R., Zhang X., Huang X., Chen Y., Yamauchi Y., Kaskel S. & Pang H. (2022). Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 32, https://doi.org/10.1002/adfm.202204714.