THE EFFECT OF CHEMICAL ACTIVATION AGENTS AND ACTIVATION TEMPERATURE ON THE PORE STRUCTURE OF RICE HUSK-DERIVED ACTIVATED CARBON
Main Article Content
Abstract
This study investigates the optimization of production parameters for rice husk-derived activated carbon, aiming for its effective application in direct air capture (DAC) technology. Various chemical activation agents (potassium hydroxide [KOH], urea, and their combination) and activation temperatures (600°C, 700°C, and 800°C) were explored using pyrolysis. The resulting activated carbon's morphology was analyzed via scanning electron microscopy (SEM) and ImageJ. Results demonstrate that both activation agent choice and temperature significantly influence pore diameter size and quantity. Increased temperatures led to smaller pore diameters and higher pore quantities. The combination of KOH and urea at 800°C produced the most favorable particle size (0.811 μm), suitable for applications requiring a well-defined pore structure. This combination also exhibited the most even pore distribution and highest pore density. These findings provide valuable insights for optimizing the production of rice husk-derived activated carbon, aiding in the development of sustainable and effective sorbents for CO₂ capture in DAC technology. Additionally, they offer potential for broader applications of husk-activated carbon in various industrial and environmental fields.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Cannone, S. F., Lanzini, A., & Santarelli, M. (2021). A review on CO2 capture technologies with focus on CO2-enhanced methane recovery from hydrates. In Energies (Vol. 14, Issue 2). MDPI AG. https://doi.org/10.3390/en14020387
Deng, Y., Li, J., Miao, Y., & Izikowitz, D. (2021). A comparative review of performance of nanomaterials for Direct Air Capture. Energy Reports, 7, 3506–3516. https://doi.org/10.1016/j.egyr.2021.06.002
Dissanayake, P. D., You, S., Igalavithana, A. D., Xia, Y., Bhatnagar, A., Gupta, S., Kua, H. W., Kim, S., Kwon, J. H., Tsang, D. C. W., & Ok, Y. S. (2020). Biochar-based adsorbents for carbon dioxide capture: A critical review. Renewable and Sustainable Energy Reviews, 119(November 2019), 109582. https://doi.org/10.1016/j.rser.2019.109582
Elhenawy, S. E. M., Khraisheh, M., Almomani, F., & Walker, G. (2020). Metal-organic frameworks as a platform for CO2 capture and chemical processes: Adsorption, membrane separation, catalytic-conversion, and electrochemical reduction of CO2. Catalysts, 10(11), 1–33. https://doi.org/10.3390/catal10111293
Goembira, F., Aristi, D. M., Nofriadi, D., & Putri, N. T. (2021). Analisis Konsentrasi PM2,5, CO, dan CO2, serta Laju Konsumsi Bahan Bakar Biopelet Sekam Padi dan Jerami pada Kompor Biomassa. Jurnal Ilmu Lingkungan, 19(2), 201–210. https://doi.org/10.14710/jil.19.2.201-210
Hussin, F., Aroua, M. K., Yusoff, R., & Szlachta, M. (2021). Preparation of eco-friendly adsorbent for enhancing CO2 adsorption capacity. Separation Science and Technology (Philadelphia), 00(00), 1–15. https://doi.org/10.1080/01496395.2021.1998122
Jouhara, H., Ahmad, D., van den Boogaert, I., Katsou, E., Simons, S., & Spencer, N. (2018). Pyrolysis of domestic based feedstock at temperatures up to 300 °C. Thermal Science and Engineering Progress, 5(October 2017), 117–143. https://doi.org/10.1016/j.tsep.2017.11.007
Lee, J. W., Kim, S., Torres Pineda, I., & Kang, Y. T. (2021). Review of nanoabsorbents for capture enhancement of CO2 and its industrial applications with design criteria. Renewable and Sustainable Energy Reviews, 138(March 2020), 110524. https://doi.org/10.1016/j.rser.2020.110524
Lushpa, N. V, Lawah, A. I., Chernyakova, K. V., & Vrublevs, I. A. (2018). Using The ImageJ Software for Determining Parameters Of Microstructure Of Nanoporous Materials By The Results Of SEM Image Processing. Big Data and Advanced Analytics, 3–4.
Rinawati, Hidayat, D., Supriyanto, R., Permana, D. F., & Yunita. (2019). Adsorption of Polycyclic Aromatic Hydrocarbons using Low-Cost Activated Carbon Derived from Rice Husk. Journal of Physics: Conference Series, 1338(1). https://doi.org/10.1088/1742-6596/1338/1/012005
Segneri, V., Trinca, A., Libardi, N., Colelli, L., Micciancio, M., & Vilardi, G. (2023). Nanoparticles used for CO2 Capture by Adsorption: a Review. Chemical Engineering Transactions, 101, 133–138. https://doi.org/10.3303/CET23101023
Shi, X., Xiao, H., Azarabadi, H., Song, J., Wu, X., Chen, X., & Lackner, K. S. (2020). Sorbents for the Direct Capture of CO2 from Ambient Air. In Angewandte Chemie - International Edition (Vol. 59, Issue 18, pp. 6984–7006). Wiley-VCH Verlag. https://doi.org/10.1002/anie.201906756
Wang, X., Chen, Y., Xu, W., Lindbråthen, A., Cheng, X., Chen, X., Zhu, L., & Deng, L. (2023). Development of high capacity moisture-swing DAC sorbent for direct air capture of CO2. Separation and Purification Technology, 324. https://doi.org/10.1016/j.seppur.2023.124489
Yaumi, A. L., Bakar, M. Z. A., & Hameed, B. H. (2018). Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed. Energy, 155, 46–55. https://doi.org/10.1016/j.energy.2018.04.183
Zhang, X., Huang, Y., Gao, H., Luo, X., Liang, Z., & Tontiwachwuthikul, P. (2019). Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Applied Energy, 240(February), 827–841. https://doi.org/10.1016/j.apenergy.2019.02.089