OPTIMIZATION OF ENZYMATIC HYDROLYSIS CONDITIONS FOR ANTIBACTERIAL PEPTIDES PRODUCTION AGAINST PANTOEA SPP. CAUSING RICE LEAF BLIGHT
Main Article Content
Abstract
The Central Composite Design (CCD) within the Response Surface Methodology (RSM) was applied to optimize the enzymatic hydrolysis process. This process used Alcalase® to hydrolyze Bactronophorus thoracites protein with the goal of maximizing its antimicrobial effects. Four distinct parameters were identified as independent variables: pH (A: 8.5–10.5), temperature (B: 45–65 °C), hydrolysis time (C: 120–360 min), and enzyme-to-substrate ratio (D: 1.45%–2.65% w/v). Meanwhile, the antimicrobial activity was chosen as the response variable, specifically against Pantoea ananatis (Y1) and Pantoea stewartii (Y2). According to the findings, the constructed quadratic polynomial model showed a significant correlation with the experimental data, as evidenced by the coefficient of determination (R2) values for antimicrobial activity: Y1 being 0.9893 (p < 0.0001) and Y2 at 0.9848 (p < 0.0001). Optimal antimicrobial activity for Bactronophorus thoracites protein hydrolysates (BTPH) was recorded at 46.748% against P. ananatis and 40.768% against P. stewartii. This result was observed under the optimal conditions of pH 9.5, temperature 55ºC, hydrolysis duration of 240 minutes, and 2.05% w/v enzyme-to-substrate ratio. There was a notable alignment between the actual and predicted values from our models, with the Residual Standard Error (RSE) values falling under 5%. Furthermore, the established Minimum Inhibitory Concentration (MIC) was 250µg/mL, and the Minimum Bactericidal Concentration (MBC) was 500µg/mL for both P. ananatis and P. stewartii. In conclusion, the findings suggest that the refined BTPH has great promise as an effective bioactive component for agricultural use.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Agrawal, S., Acharya, D., Adholeya, A., Barrow, C. J., Deshmukh, S. K. (2017). Nonribosomal peptides from marine microbes and their antimicrobial and anticancer potential, Frontiers in Pharmacology, 8(828): 1-26.
Amin, A. M., Cheng, S. K. (2019). Optimisation of enzymatic hydrolysis condition of angelwing clam (Pholas orientalis) meat using alcalase® to obtain maximum degree of hydrolysis, Malaysian Applied Biology, 48(3): 55-62.
Amin, A. M., Lee, W. S., and Sharmin, K. N. (2020). Optimisation of enzymatic hydrolysis conditions of seaweed (Gracilaria fisheri) protein by using Alcalase® to obtain maximum angiotensin-i-converting enzyme (ace) inhibitory activity, Malaysian Applied Biology, 49(5): 99-113.
Auwal, S. M., Zarei, M., Abdul-Hamid, A., Saari, N. (2017). Response Surface Optimisation for the Production of Antioxidant Hydrolysates from Stone Fish Protein Using Bromelain, Evidence-Based Complementary and Alternative Medicine 2017,1-10.
Avila, C. (2006). Molluscan natural products as biological models: chemical ecology, histology, and laboratory culture, Progress in molecular and subcellular biology, 43:1-23.
Azizi, M. M. F., Ismail, S. I., Hata, E. M., Zulperi, D., Ina-Salwany, M. Y., Abdullah, M. A. F. (2019). First Report of Pantoea stewartii subsp. indologenes Causing Leaf Blight on Rice in Malaysia, Plant Disease, 103(6):1407.
Azizi, M. M. F., Zulperi, D., Rahman, M. A. A., Abdul-Basir, B., Othman, N. A., Ismail, S. I., Hata, E. M., Ina-Salwany, M. Y., Abdullah, M. A. F. (2019). First Report of Pantoea ananatis Causing Leaf Blight Disease of Rice in Peninsular Malaysia, Plant Disease, 103(8):2122.
Benkendorff, K. (2010). Molluscan biological and chemical diversity: Secondary metabolites and medicinal resources produced by marine molluscs, Biological Reviews, 85(4):757-775.
Benkendorff, K. (2014). Chemical diversity in molluscan communities: From natural products to chemical ecology. In: Neuroecology and Neuroethology in Molluscs: The Interface between Behaviour and Environment. Di Cosmo, A., Winlow, W., Eds.; Nova Scientific Publishers Inc.: New York, NY, USA. pp.13-41
Bordbar, S., Ebrahimpour, A., Zarei, M., Hamid, A. A., Saari, N. (2018). Alcalase-generated proteolysates of stone fish (Actinopyga lecanora) flesh as a new source of antioxidant peptides, International Journal of Food Properties, 21(1):1541-1559.
Brearley A., Kashane C., Nopadon K. (2003). Pholadidae and Teredinidae (Mollusca: Bivalvia) collected from mangrove habitats on the Burrup Peninsula, Western Australia. In: Wells, F.E., Walker, D.I., Jones, D.S. (Eds.), Proceedings of the Eleventh International Marine Biological Workshop. Western Australian Museum, Perth. pp.345–361.
Charlet, M., Chernysh, S., Philippe, H., Hetru C., Hoffmann, J. A., Bulet, P. (1996). Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusk, Mytilus edulis, J Biol Chem, 271:21808–21813.
Chukwu, S. C., Rafii, M. Y., Ramlee, S. I., Ismail, S. I., Hasan, M. M., Oladosu, Y. A., Magaji, U. G., Akos, I., Olalekan, K. K. (2019). Bacterial leaf blight resistance in rice: a review of conventional breeding to molecular approach, Molecular Biology Reports, 46(1):1519–1532.
Ciavatta, M. L., Lefranc, F., Carbone, M., Mollo, E., Gavagnin, M., Betancourt, T., Dasari, R., Kornienko, A., Kiss, R. (2017). Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance, Medicinal Research Reviews, 37(4):702-801.
Datta, A., Ghosh, A., Airoldi, C., Sperandeo, P., Mroue, K. H., Jimenez-Barbero, J., Kundu, P., Ramamoorthy, A., Bhunia, A. (2015). Antimicrobial peptides: Insights into membrane permeabilisation, lipopolysaccharide fragmentation and application in plant disease control, Scientific Reports, 5(11951):1-15.
Fahmy, R. (2013). In vitro antioxidant, analgesic and cytotoxic activities of Sepia officinalis ink and Coelatura aegyptiaca extracts, African Journal of Pharmacy and Pharmacology, 7(22):1512-1522.
Gogineni, V., Hamann, M. T. (2018). Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology, Biochimica et Biophysica Acta - General Subjects, 1862(1):81-196.
González, A. D., Franco, M. A., Contreras, N., Galindo-Castro, I., Jayaro, Y., Graterol, E. (2015). First report of Pantoea agglomerans causing rice leaf blight in Venezuela, Plant Disease, 99(4):552.
Gottipati, R., Mishra, S. (2010). Process optimisation of adsorption of Cr(VI) on activated carbons prepared from plant precursors by a two-level full factorial design, Chemical Engineering Journal, 160(1):99-107.
Hamed, S. M., Abd El-Rhman, A. A., Abdel-Raouf, N., Ibraheem, I. B. M. (2018). Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology, Journal of Basic and Applied Sciences, 7(1):104-110.
Haslaniza, H., Maskat, M. Y., Wan Aida, W. M., Mamot, S. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water, International Food Research Journal, 17(1):147-152.
Hubert, F. (1996). A member of the arthropod defensin family from edible Mediterranean mussels (Mytilus galloprovincialis), European Journal of Biochemistry, 240(1):302-306.
Jamal, S. N., Donny, D. A., Lamasudin, D. U. (2022). The Influence of Enzymatic Hydrolysis on Antimicrobial Activity Against Rice Pathogens from Bactronophorus thoracites (Shipworm) Protein Hydrolysate, Malay. J. Biochem. Mol. Biol., 25(3):47–57.
Jamal, S. N., Muhialdin, B. J., Saidi, N. B., Lai, K. S., Yusof, M. T., Lamasudin, D. U. (2022). The effect of lactic acid fermentation of Bactronophorus thoracites on antimicrobial activity against rice pathogens, Malaysian Journal of Microbiology, 18(6):592–601.
Jayaprakash, R., and Perera, C. O. (2020). Partial Purification and Characterisation of Bioactive Peptides from Cooked New Zealand Green-Lipped Mussel (Perna canaliculus) Protein Hydrolyzates, Foods, 9(7):1-19.
Kaspar, F., Neubauer, P., Gimpel, M. (2019). Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review, Journal of Natural Products, 82(7):2038–2053.
Khan, J. A., Siddiq, R., Arshad, H. M. I., Anwar, H. S., Saleem, K., Jamil, F. F. (2012). Chemical control of bacterial leaf blight of rice caused by Xanthomonas oryzae pv. Oryzae, Pakistan Journal of Phytopayjology, 24(2):97-100.
Krishnan, S., Chakraborty, K. (2019). Functional Properties of Ethyl Acetate-methanol Extract of Commonly Edible Molluscs, Journal of Aquatic Food Product Technology, 28(7):729-742.
Lee, H. B., Hong, J. P., Kim, S. B. (2010). First Report of Leaf Blight Caused by Pantoea agglomerans on Rice in Korea, Plant Disease, 94(11):1372.
Lee, S. Y., Mohamed, R., Lamasudin, D. U. (2019). Morphology and molecular phylogenetic placement of a coastal shipworm (Bactronophorus thoracites (Gould, 1862), Teredinidae) from Peninsular Malaysia, Regional Studies in Marine Science, 29:100694.
Mitta, G., Hubert, F., Noël, T., Roch, P. (1999). Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis, European Journal of Biochemistry, 265(1):71-78.
Mohamad Asri, N., Muhialdin, B. J., Zarei, M., Saari, N. (2020). Low molecular weight peptides generated from palm kernel cake via solid state lacto-fermentation extend the shelf life of bread, LWT, 134:110206.
Mondal, K. K., Mani, C., Singh, J., Kim, J.-G., Mudgett, M. B. (2011). A New Leaf Blight of Rice Caused by Pantoea ananatis in India, Plant Disease, 95(12):1582.
Ngan, C. L., Basri, M., Lye, F. F., Fard Masoumi, H. R., Tripathy, M., Abedi Karjiban, R., Abdul-Malek, E. (2014). Comparison of Box-Behnken and central composite designs in optimisation of fullerene loaded palm-based nano-emulsions for cosmeceutical application, Industrial Crops and Products, 59:309-317.
Pruzzo, C., Gallo, G., Canesi, L. (2005). Persistence of vibrios in marine bivalves: The role of interactions with haemolymph components, Environmental Microbiology, 7(6):61 – 772.
Riviere, G., Fellous, A., Franco, A., Bernay, B., Favrel, P. (2011). A crucial role in fertility for the oyster angiotensin-converting enzyme orthologue CgACE, PLoS ONE, 6(12):1-11.
Robertsen, H. L., Musiol-Kroll, E. M. (2019). Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs, Antibiotics, 8(4):157.
Rosa, R. D., Santini, A., Fievet, J., Bulet, P., Destoumieux-Garzón, D., Bachère, E. (2011). Big defensins, a diverse family of antimicrobial peptides that follows different patterns of expression in hemocytes of the oyster Crassostrea gigas, PLoS ONE, 6(9):1-11.
Sable, R., Parajuli, P., Jois, S. (2017). Peptides, peptidomimetics, and polypeptides from marine sources: A wealth of natural sources for pharmaceutical applications, Marine Drugs, 15(4):124.
Sarika, Iquebal, M. A., Rai, A. (2012). Biotic stress resistance in agriculture through antimicrobial peptides, Peptides, 36(2):322-330.
Sathoff, A. E., Velivelli, S., Shah, D. M., Samac, D. A. (2019). Plant defensin peptides have antifungal and antibacterial activity against human and plant pathogens, Phytopathology, 109(3):402-408.
Seo, J. K., Lee, M. J., Jung, H. G., Go, H. J., Kim, Y. J., Park, N. G. (2014). Antimicrobial function of SHβAP, a novel hemoglobin β chain-related antimicrobial peptide, isolated from the liver of skipjack tuna, Katsuwonus pelamis, Fish and Shellfish Immunology, 37(1):173-183.
Sharma, Arun, Sharma, R., Imamura, M., Yamakawa, M., Machii, H. (2000). Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice, FEBS Letters, 484(1):7-11.
Sila, A., Bougatef, A. (2016). Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review, Journal of Functional Foods, 21:10-26.
Sundin, G. W., Wang, N. (2018). Antibiotic resistance in plant-pathogenic bacteria, Annual Review of Phytopathology, 56:1-20.
Tassanakajon, A., Somboonwiwat, K., Amparyup, P. (2015). Sequence diversity and evolution of antimicrobial peptides in invertebrates, Developmental and Comparative Immunology, 48(2):324-341.
Tincu, J. A., Taylor, S. W. (2004). Antimicrobial peptides from marine invertebrates, Antimicrobial Agents and Chemotherapy, 48 (10):3645-3654.
Toh, W. K., Loh, P. C., Wong, H. L. (2019). First report of leaf blight of rice caused by Pantoea ananatis and Pantoea dispersa in Malaysia, Plant Disease, 103(7):1764.
Turner, R. D. (1966). A survey and illustrated catalogue of the Teredinidae (Mollusca: Bivalvia). In: A survey and illustrated catalogue of the Teredinidae (Mollusca: Bivalvia). pp.265.
Valarmathi, P. (2020). Antibiotics- A Miracle Drug as Crop Protectants: A Review, Agricultural Reviews, 41:43-50.
Wijesekara, I., Kim, S. K. (2010). Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry, Marine Drugs, 8(4):1080-1093.
Zainol, M. K., Abdul Sukor, F. W., Fisal, A., Tuan Zainazor, T. C., Abdul Wahab, M. R., Zamri, A. I. (2021). Optimisation of enzymatic protein hydrolysis conditions of Asiatic hard clam (Meretrix meretrix), Food Research, 5(4):153 - 162.