A SIMPLE 3D TOOLBOX-BASED SMARTPHONE COLORIMETER: THE ABILITY TO DETECT THE STOICHIOMETRIC EQUIVALENT OF A CHEMICAL REACTION
Main Article Content
Abstract
The simple 3D toolbox is constructed and used with a smartphone for detecting the stoichiometric equivalent of chemical reactions. The reaction between salicylic acid and iron(III) ion to form a purple complex is chosen. The captured image of the purple product is measured for RGB color intensities. The color intensities of the solutions depends on concentration of the colored product, and the constant color intensities were observed after the reaction reached its stoichiometry. Several smartphones have been tested for capturing the images and measuring the color intensities. It revealed that all smartphones can be used but the white balance mode is required tuning up to get clear enough picture for color intensity measurement. This smartphone spectrometer provides a comparable results to those obtained from a commercial ultraviolet-visible spectrometer. This work can be a guideline for creation of portable devices in chemical analysis using a smartphone. Moreover, the developed device and method can be practically repeated in chemistry laboratory class for teaching stoichiometry and chemical reaction using a smartphone.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Crocombe R.A. (2018). Portable spectroscopy. Applied Spectroscopy 72: 1701-1751. https://doi.org/10.1177/0003702818809719
Jackson K.R., Layne T., Dent D.A., Tsuei A., Li J., Haverstick D.M. & Landers J.P. (2020). A novel loop-mediated isothermal amplification method for identification of four body fluids with smartphone detection. Forensic Science International: Genetics 45: 102195. https://doi.org/10.1016/j.fsigen.2019.102195
Jin R., Wang F., Li G., Yan X., Liu M., Chen Y., Zhou W., Gao H., Sun P. & Lu G. (2021). Construction of multienzyme-hydrogel sensor with smartphone detector for on-site monitoring of organophosphorus pesticide. Sensor and Actuator B: Chemical 327: 128922. https://doi.org/10.1016/j.snb.2020.128922
Kajornklin P., Jarujamrus P., Phanphon P., Ngernpradab P., Supasorn S., Chairam S. & Amatatongchai M. (2020). Fabricating a low-cost, simple, screen printed paper towel-based experimental device to demonstrate the factors affecting chemical equilibrium and chemical equilibrium constant, Kc. Journal of Chemical Education 97: 1984-1991. https://doi.org/10.1021/acs.jchemed.9b00918
Kap O., Kilic V., Hardy J.G. & Horzum N. (2021). Smartphone-based colorimetric detection systems for glucose monitoring in the diagnosis and management of diabetes. Analyst 146: 2784–2806. https://doi.org/10.1039/D0AN02031A
Ko C.H., Liu C.C., Chen K.H., Sheu F., Fu L.M. & Chen S.J. (2021). Microfluidic colorimetric analysis system for sodium benzoate detection in foods. Food Chemistry 345:128773. https://doi.org/10.1016/j.foodchem.2020.128773
Koohkan R., Kaykhaii M., Sasani M. & Paull B. (2020). Fabrication of a smartphone-based spectrophotometer and its application in monitoring concentrations of organic Dyes. ACS Omega 5: 31450-31455. https://doi.org/10.1021/acsomega.0c05123
Lantam A., Limbut W., Thiagchanya A. & Phonchai A. (2020). A portable optical colorimetric sensor for the determination of promethazine in lean cocktail and pharmaceutical doses. Microchemical Journal 159: 105519. https://doi.org/10.1016/j.microc.2020.105519
Li X., Li J., Ling J., Wang C., Ding Y., Chang Y., Li N., Wang Y. & Cai J. (2020). A smartphone-based bacteria sensor for rapid and portable identification of forensic saliva sample. Sensor and Actuator B: Chemical 320: 128303. https://doi.org/10.1016/j.snb.2020.128303
Moonrungsee1 N., Peamaroon N., Boonmee A., Suwancharoen S. & Jakmunee J. (2018). Evaluation of tyrosinase inhibitory activity in Salak (Salacca zalacca) extracts using the digital image-based colorimetric method. Chemical Paper 72: 2729-2736. https://doi.org/10.1007/s11696-018-0528-1
Moonrungsee N., Pencharee S. & Jakmunee J. (2015). Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta 136: 204-209. https://doi.org/10.1016/j.talanta.2015.01.024
Moonrungsee N., Pencharee S., Junsomboon J., Jakmunee J. & Peamaroon N. (2020). A simple colorimetric procedure using a smartphone camera for determination of copper in copper supported silica catalysts. Journal of Analytical Chemistry 75: 200-207. https://doi.org/10.1134/S1061934820020136
Moonrungsee N., Pencharee S. & Peamaroon N. (2016). Determination of iron in zeolite catalysts by a smartphone camera-based colorimetric analyzer. Instrumentation Science & Technology 44: 401-409. https://doi.org/10.1080/10739149.2015.1137587
Moonrungsee2 N., Prachain C., Bumrungkij C., Jakmunee J. & Peamaroon N. (2018). A simple device with a smartphone camera for determination of salicylic acid in foods, drugs and cosmetics (in Thai). The Journal of KMUTNB 28: 639-648. https://doi.org/10.14416/j.kmutnb.2018.03.001
Nixon M., Outlaw F. & Leung T.S. (2020). Accurate device-independent colorimetric measurements using smartphones. PLOS ONE 15: 1-19. https://doi.org/10.1371/journal.pone.0230561
Peamaroon N., Jakmunee J. & Moonrungsee N. (2021). A simple colorimetric procedure for the determination of iodine value of vegetable oils using a smartphone camera. Journal of Analysis and Testing 5: 379-386. https://doi.org/10.1007/s41664-021-00168-x
Phadungcharoen N., Pengwanput N., Nakapan A., Sutitaphan U., Thanomklom P., Jongudomsombut N., Chinsriwongkul A. & Rojanarata T. (2020). Ion pair extraction coupled with digital image colorimetry as a rapid and green platform for pharmaceutical analysis: an example of chlorpromazine hydrochloride tablet assay. Talanta 219: 121271. https://doi.org/10.1016/j.talanta.2020.121271
Qi M., Huo J., Li Z., He C., Li D., Wang Y., Vasylieva N., Zhang J. & Hammock B.D. (2020). On-spot quantitative analysis of dicamba in field waters using a lateral flow immunochromatographic strip with smartphone imaging. Analytical and Bioanalytical Chemistry 412: 6995-7006. https://doi.org/10.1007/s00216-020-02833-z
Rajendraprasad N. & Basavaiah K. (2016). Modified spectrophotometric methods for determination of iron(III) in leaves and pharmaceuticals using salicylic acid. Indian Journal of Advances in Chemical Science 4: 302-307.
Samacoits A., Nimsamer P., Mayuramart O., Chantaravisoot N., Sitthi-amorn P., Nakhakes C., Luangkamchorn L., Tongcham P., Zahm U., Suphanpayak S., Padungwattanachoke N., Leelarthaphin N., Huayhongthong H., Pisitkun T., Payungporn S. & Hannanta-anan P. (2021). Machine learning-driven and smartphone-based fluorescence detection for CRISPR diagnostic of SARS-CoV-2. ACS Omega 6: 2727–2733. https://doi.org/10.1021/acsomega.0c04929
Santos R.C., Cavalcanti J.N.C., Carmo E.C.W., Souza F.C., Soares W.G., Souza C.G., Andrade D.F. & Avila L.A. (2020). Approaching diesel fuel quality in chemistry lab classes: undergraduate student’s achievements on determination of biodiesel content in diesel oil applying solvatochromic effect. Journal of Chemical Education 97: 4462-4468. https://doi.org/10.1021/acs.jchemed.0c00773
Sargazi M. & Kaykhaii M. (2020). Application of a smartphone based spectrophotometer for rapid in-field determination of nitrite and chlorine in environmental water samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 227: 117672. https://doi.org/10.1016/j.saa.2019.117672
Shahvar A., Shamsaei D. & Saraji M. (2020). A portable smartphone-based colorimetric sensor for rapid determination of water content in ethanol. Measurement 150: 107068. https://doi.org/10.1016/j.measurement.2019.107068
Souza W.S., De Oliveira M.A.S., De Oliveira G.M.F., De Santana D.P. & De Araujo, R.E. (2018). Self-referencing method for relative color intensity analysis using mobile-phone. Optics and Photonics Journal 8: 264-275. https://doi.org/10.4236/opj.2018.87022