A COMPUTATIONAL DENSITY FUNCTIONAL THEORY INVESTIGATION OF THE INTERACTION OF BORON NITRIDE NANOSHEETS WITH MULTIPLE MOLECULAR HYDROGENS
Main Article Content
Abstract
In this study, the adsorption of molecular hydrogens (H2) on boron nitride (BN) frameworks was investigated using the density functional theory (DFT) technique. The results of optimized geometric structures revealed that molecular hydrogens were favourably adsorbed on top of nitrogen atoms in the BN monolayers. In addition, the optimized equilibrium geometries were utilized to calculate the electronic structures, including binding energies, energies of the highest and lowest occupied molecular orbitals (HOMO and LUMO), molecular electrostatic potentials (MEPs), and Mulliken atomic charges (MACs). The binding energy values were calculated to be approximately 0.01 eV per molecular hydrogen based on the results. As the number of molecular hydrogens increased in the BN framework, a slight increase was observed in the binding energy value per hydrogen molecule. Furthermore, the HOMO–LUMO gaps were determined with the corresponding energy values of about 6 eV. Regarding the Frontier molecular orbitals (FMOs) diagrams, the electron densities for the HOMOs of the studied systems were primarily focused on the N-edges. Conversely, for the LUMO, the electron density distribution was localized in the B-edges of titled systems. In the context of hydrogen adsorption on BN nanosheets, the MEP maps indicated that hydrogen atoms at the N-edges of the studied systems exhibited the most positive electrostatic potentials in this research. In contrast, surfaces with negative electrostatic potential surfaces were situated in the region close to B-edges. The computed results are consistent with the corresponding Mulliken atomic charge distributions. From the analyses of the Mulliken scheme, all nitrogen atoms displayed negative charge values, and positive charges were found on the boron atoms. The DFT results obtained in this report may serve as the foundation for developing hydrogen storage materials
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Anota E. C., Juarez A. R., Castro M. & Cocoletzi H. H. (2013). A density functional theory analysis for the adsorption of the amine group on graphene and boron nitride nanosheets, Journal of Molecular Modeling 19: 321–328.
Ansaloni L. M. S. & Sousa E. M. B. d. (2013). Boron nitride nanostructures: Synthesis, characterization and potential use in cosmetics, Materials Sciences, and Applications 4: 22–28.
Chettri B., Patra P. K., Hieu N. N. & Rai D. P. (2021). Hexagonal boron nitride (h–BN) nanosheet as a potential hydrogen adsorption material: A density functional theory (DFT) study, Surface and Interfaces 24: 101043(1–8).
Esrafili M. D. & Behzadi H. (2013). A comparative study on carbon, boron–nitride, boron–phosphide, and silicon–carbide nanotubes based on surface electrostatic potentials and average local ionization energies, Journal of Materials Chemistry A 19(6): 2375–2382.
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J., Gaussian 09, Wallingford CT, United Sate: Gaussian, Inc.
Gonzalez–Ortiz D., Salameh C., Bechelany M. & Miele P. (2020). Nanostructured boron nitride–based materials: synthesis and applications, Materials Today Advances 8: 100107(1–20).
Izyumskaya N., Demchenko D. O., Das S., Ozgur U., Avrution V. & Morkoc H. (2017). Recent development of boron nitride towards electronic applications, Advanced Electronic Materials 1600485(1–22).
Javan M. B., Soltani A., Ghasemi A. S., Lemeski E. T., Ghilami N., Balakheyli H. (2017). Ga–doped and antisite double defects enhance the sensitivity of boron nitride nanotubes towards soman and chlorosoman, Applied Surface Science 411: 1–10.
Kannan P. K., Saraswathi R. & Bercamans L. J. (2013). Combustion synthesis of boron nitride by glycine route, Research Journal of Chemical Sciences 3(2): 59–64.
Lale A., Bernard S. & Demirci U. B. (2018). Boron nitride for hydrogen storage, ChemPlusChem 83(10): 893–903.
Mukasyan A. S. (2017). Boron Nitride, Concise Encyclopedia of Self–Propagating High–Temperature Synthesis, pp. 45–47, Amsterdam, Netherlands: Elsevier.
Oku, T. (2015). Hydrogen storage in boron nitride and carbon nanomaterials, Energies 8(1): 319–337.
Pease R. S. (1952). An X–ray study of boron Nitride, Acta Crystallographica 5(3): 356–361.
Shah–Naqvi S. A. A., Toh P. L., Lim Y. C., Wang S. M., Ang L. S. & Sim L. C. (2022). Computational density functional theory investigation of stability and electronic structures on boron nitride systems doped with/without group IV elements, Malaysian Journal of Chemistry 24(1): 85–93.
Shah–Naqvi S. A. A., Toh P. L., Lim Y. C., Wang S. M., Ang L. S. & Sim L. C. (2021). Computational study of hydrogen molecules adsorption on boron nitride with/without adopted by one of elements from group IV, IOP Conference Series Earth and Environmental Science 945(1): 012001(1–12).
Shuaibu A., Adeyemi O. J. & Usiekpan U. R. (2019). First principle study of structural, elastic and electronic properties of hexagonal boron nitride (Hex–BN) single layer, American Journal of Condensed Matter Physics 9(1): 1–5.
Thomas S., Manju M. S., Ajith K.M., Lee S.U., Zaeem M. A. (2020). Strain–induced work function in h–BN and BCN monolayers, Physica E: Low–Dimensional Systems and Nanostructures 123: 114180(1–9).
Toh P. L. & Wang S. M. (2019). Theoretical investigations of the structural and electronic properties of boron nitride clusters: DFT comparison of several basis sets, Journal of Physics: Conference Series 1349: 012137(1–6).
Zheng F. L., Zhang Y., Zhang J. M. & Xu K. W. (2011). Effect of the dangling bond on the electronic and magnetic properties of BN nanoribbon, Journal of Physics and Chemistry of Solids 72(4): 256–262.