EX VIVO TERAHERTZ IMAGING REFLECTION OF MALIGNANT AND BENIGN HUMAN BREAST TUMORS
Main Article Content
Abstract
This study evaluated the effectiveness of spectroscopy and imaging tools, using a previously-unexplored (0.2- 1.4) terahertz range, for investigating tumors in human tissue and distinguishing between malignant and benign cancer cells. One advantage of this technique is that terahertz radiation in this frequency range passes through human tissue without causing ionization or any negative effects To assess the effectiveness of this band of frequencies, THz data were collected from 10 different fresh breast tissue samples, extracted directly after excision. The optical properties were investigated at a range of low frequencies and THz imaging revealed good contrast between the different types of fresh tissue. Observations indicated that the optical and electrical properties in the low-frequency (0.3-0.5) range provided accurate information about breast cancer tissue. These results demonstrated the effectiveness of the technique up to 0.5 THz for ex vivo studies in medical applications.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Al-Ibadi, A., Cassar, Q., Zimmer, T., MacGrogan, G., Mavarani, L., Hillger, P., Grzyb, J., Pfeiffer, U. R., Guillet, J. P., & Mounaix, P. (2017). THz spectroscopy and imaging for breast cancer detection in the 300-500 GHz range. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Spp 1857, 1–1. https://doi.org/10.1109/IRMMW-THz.2017.8067037
Ballacey, H., Al-Ibadi, A., Macgrogan, G., Guillet, J. P., Macpherson, E., & Mounaix, P. (2016). Automated data and image processing for biomedical sample analysis. International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, 2016-Novem, 2–3. https://doi.org/10.1109/IRMMW-THz.2016.7758882
Cassar, Q., Al-Ibadi, A., Mavarani, L., Hillger, P., Grzyb, J., MacGrogan, G., Zimmer, T., Pfeiffer, U. R., Guillet, J.-P., & Mounaix, P. (2018). Pilot study of freshly excised breast tissue response in the 300 – 600 GHz range. Biomedical Optics Express, 9(7), 2930. https://doi.org/10.1364/boe.9.002930
El-Shenawee, M., Vohra, N., Bowman, T., & Bailey, K. (2019). Cancer detection in excised breast tumors using terahertz imaging and spectroscopy. Biomedical Spectroscopy and Imaging, 8(1–2), 1–9. https://doi.org/10.3233/bsi-190187
Fan, S., He, Y., Ung, B. S., & Pickwell-Macpherson, E. (2014). The growth of biomedical terahertz research. Journal of Physics D: Applied Physics, 47(37). https://doi.org/10.1088/0022-3727/47/37/374009
Fan, S., Parrott, E. P. J., Ung, B. S. Y., & Pickwell-MacPherson, E. (2016). Calibration method to improve the accuracy of THz imaging and spectroscopy in reflection geometry. Photonics Research, 4(3), A29. https://doi.org/10.1364/prj.4.000a29
Gong, A., Qiu, Y., Chen, X., Zhao, Z., Xia, L., & Shao, Y. (2020). Biomedical applications of terahertz technology. Applied Spectroscopy Reviews, 55(5), 418–438. https://doi.org/10.1080/05704928.2019.1670202
Hejmadi, M. (2010). Introduction to Cancer Biology. In Expert Opinion on Pharmacotherapy (2nd editio, Vol. 2, Issue 4). https://doi.org/10.1517/14656566.2.4.613
Joyce, H. J., Boland, J. L., Davies, C. L., Baig, S. A., & Johnston, M. B. (2016). A review of the electrical properties of semiconductor nanowires: Insights gained from terahertz conductivity spectroscopy. Semiconductor Science and Technology, 31(10). https://doi.org/10.1088/0268-1242/31/10/103003
Pashkin, A., Kempa, M., Němec, H., Kadlec, F., & Kužel, P. (2003). Phase-sensitive time-domain terahertz reflection spectroscopy. Review of Scientific Instruments, 74(11), 4711–4717. https://doi.org/10.1063/1.1614878
Peter, B. S., Yngvesson, S., Siqueira, P., Kelly, P., Khan, A., Glick, S., & Karellas, A. (2013). Development and testing of a single frequency terahertz imaging system for breast cancer detection. IEEE Transactions on Terahertz Science and Technology, 3(4), 374–386. https://doi.org/10.1109/TTHZ.2013.2241429
Sun, K., Tordjman, J., Clément, K., & Scherer, P. E. (2013). Fibrosis and adipose tissue dysfunction. Cell Metabolism, 18(4), 470–477. https://doi.org/10.1016/j.cmet.2013.06.016
Wahaia, F., Kašalynas, I., Minkevičius, L., Carvalho Silva, C. D., Urbanowicz, A., & Valušis, G. (2020). Terahertz spectroscopy and imaging for gastric cancer diagnosis. Journal of Spectral Imaging, 9, 1–8. https://doi.org/10.1255/jsi.2020.a2
Wang, Y., Chen, D., Qian, H., Tsai, Y. S., Shao, S., Liu, Q., Dominguez, D., & Wang, Z. (2014). The Splicing Factor RBM4 Controls Apoptosis , Proliferation , and Migration to Suppress Tumor Progression. Cancer Cell, 26(3), 374–389. https://doi.org/10.1016/j.ccr.2014.07.010
WHO. (2017). Guide to Cancer - Guide to cancer early diagnosis. In World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/254500/9789241511940-eng.pdf;jsessionid=2646A3E30075DB0FCA4A703A481A5494?sequence=1
Wilmink, G. J., & Grundt, J. E. (2011). Invited Review Article : Current State of Research on Biological Effects of Terahertz Radiation. J Infrared Milli Terahz Waves, 32, 1074–1122. https://doi.org/10.1007/s10762-011-9794-5
Yu, C., Fan, S., Sun, Y., & Pickwell-Macpherson, E. (2012). The potential of terahertz imaging for cancer diagnosis: A review of investigations to date. Quantitative Imaging in Medicine and Surgery, 2(1), 33–45. https://doi.org/10.3978/j.issn.2223-4292.2012.01.04