EFFECT TWO ZERO DISPERSION WAVELENGTHS AND RAMAN SCATTERING IN THE THIRD-ORDER SOLITON OF SOLID CORE PHOTONIC CRYSTAL FIBERS TO PRODUCE SUPERCONTINUUM GENERATION
Main Article Content
Abstract
Photonic crystal fibers (PCFs) which consist of dielectric materials are a don't ever and an ever field in more modern application. The Split-Step Fourier method (SSFM) was used in this work to create a fiber photonic crystal, which was suggested and validated using a Matlab software .The impact of two -zero- dispersion on the Soliton in solid core photonic crystal fibers has been studied by investigating the interplay between Raman effect and second- order- dispersion. It has been discovered that the proposed photonic crystal fibers two –zero- dispersion wavelengths (TZDW) can be used to effectively tailor the properties of third order soliton. Many current applications, including medical and industrial, rely on spectral expansion. In addition, soliton has an important role in modern communication systems.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Agrawal, G. P. (2000). Nonlinear fiber optics. In Nonlinear Science at the Dawn of the 21st
Century (pp. 195-211). Springer, Berlin, Heidelberg.
Amiranashvili, S., Bandelow, U., & Akhmediev, N. (2013). Few-cycle optical solitary waves
in nonlinear dispersive media. Physical Review A, 87(1), 013805.
Krupa, K., Tonello, A., Barthélémy, A., Mansuryan, T., Couderc, V., Millot, G., ... &
Wabnitz, S. (2019). Multimode nonlinear fiber optics, a spatiotemporal avenue.
APL Photonics, 4(11), 110901 .
Maidi, A. M. I., Abas, P. E., Petra, P. I., Kaijage, S., Zou, N., & Begum, F. (2021, July).
Theoretical considerations of photonic crystal fiber with all uniform-sized air holes for
liquid sensing. In Photonics (Vol. 8, No. 7, p. 249). Multidisciplinary Digital
Publishing Institute.
Pisco, M., & Galeotti, F. (2021). Nano-and Micropatterning on Optical Fibers by Bottom-Up
Approach: The Importance of Being Ordered. Applied Sciences, 11(7), 3254.
Amiranashvili, S., Bandelow, U., & Akhmediev, N. (2014). Spectral properties of limiting
solitons in optical fibers. Optics express, 22(24), 30251-30256.
Nixon, S. D. (2011). Development and Applications of Soliton Perturbation Theory.
University of Colorado at Boulder.
Chakravarthi, M. K., Watekar, P. R., Babu, A. V., Sateesh, M., & Reddy, P. V. Optimization
of Silica Glass Micro Fiber for Zero Dispersion Wavelength. In National Conference
on Innovative Paradigms in Engineering Technology (NCIPET-2012) Proceedings.
S Habeb, R. (2018). Design of Zero Dispersion Optical Fiber at Wavelength 1.3
m. JOURNAL OF EDUCATION AND SCIENCE, 27(4), 54-68.
Cheng, C., Wang, Y., & Ou, Y. (2012). Enhanced red-shifted radiation by pulse trapping in
photonic crystal fibers with two zero-dispersion wavelengths. Optics & Laser
Technology, 44(4), 954-959.
Ung, B., & Skorobogatiy, M. (2011). Extreme nonlinear optical enhancement in chalcogenide
glass fibers with deep-subwavelength metallic nanowires. Optics letters, 36(13), 2527-
Foster, M. A., Turner, A. C., Lipson, M., & Gaeta, A. L. (2008). Nonlinear optics in
photonic nanowires. Optics Express, 16(2), 1300-1320.
Fujii, S., & Tanabe, T. (2020). Dispersion engineering and measurement of whispering
gallery mode microresonator for Kerr frequency comb generation nanophotonic,
(5), 1087-1104.
Hasan, M., Ahmed, S. N., & Mohiuddin, M. (2011). Study of soliton propagation inside
optical fiber for ultra-short pulse (Doctoral dissertation, BRAC University).
Ferreira, M. F. (2008). Nonlinear effects in optical fibers: Limitations and possibility.
Journal of Nonlinear Optical Physics & Materials, 17(01), 23-35.
Dubey PK., Shukla V.,( 2014) Dispersion in optical fiber communication. International
Journal of Science and Research (IJSR), 3: 236 – 239.
Sadeghpour, H. R., & Dalgarno, A. (1992). Rayleigh and Raman scattering by hydrogen and
caesium. Journal of Physics B: Atomic, Molecular and Optical Physics, 25(22),
Singh, M., Sharma, A. K., & Kaler, R. S. (2009). Investigations on timing jitter by chirp
selection of external modulator in return-to-zero optical soliton pulse transmission at
Gb/s. Fiber and Integrated Optics, 28(5), 354-365.
Hansson, T., Tonello, A., Mansuryan, T., Mangini, F., Zitelli, M., Ferraro, M., ... & Couderc,
V. (2020). Nonlinear beam self-imaging and self-focusing dynamics in a GRIN
multimode optical fiber: theory and experiments. Optics Express, 28(16), 24005-
Akhmediev, N., Soto-Crespo, J. M., Vouzas, P., Devine, N., & Chang, W. (2018).
Dissipative solitons with extreme spikes in the normal and anomalous dispersion
regimes. Philosophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 376(2124), 20180023.
Melnik, M. V., Tcypkin, A. N., & Kozlov, S. A. (2018). Temporal coherence of optical
supercontinuum. Rom. J. Phys, 63, 203.
Malomed, B., Torner Sabata, L., Wise, F., & Mihalache, D. (2016). On multidimensional
solitons and their legacy in contemporary atomic, molecular and optical
physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 49(17),
Li, P., Mihalache, D., & Malomed, B. A. (2018). Optical solitons in media with focusing and
defocusing saturable nonlinearity and a parity-time-symmetric external potential.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 376(2124), 20170378...
Lee, J. H., van Howe, J., Xu, C., & Liu, X. (2008). Soliton self-frequency shift: experimental
demonstrations and applications. IEEE Journal of Selected Topics in Quantum
Electronics, 14(3), 713-723.
Boyd, R. W. (2020). Nonlinear optics. Academic press.
Shah, N. A., Agarwal, P., Chung, J. D., El-Zahar, E. R., & Hamed, Y. S. (2020). Analysis of
optical solitons for nonlinear schrödinger equation with detuning term by iterative
transform method. Symmetry, 12(11), 1850.
Duan, L., Liu, X., Mao, D., Wang, L., & Wang, G. (2012). Experimental observation of
dissipative soliton resonance in an anomalous-dispersion fiber laser. Optics
express, 20(1), 265-270.
Luan, F., Yulin, A. V., Knight, J. C., & Skryabin, D. V. (2006). Polarization instability of
solitons in photonic crystal fibers. Optics express, 14(14), 6550-6556.
Sakr, H., Hussein, R. A., Hameed, M. F. O., & Obayya, S. S. A. (2019). Analysis of photonic
crystal fiber with silicon core for efficient supercontinuum generation. Optik, 182, 848-
Sutherland, R. L. (2003). Handbook of nonlinear optics. CRC press.
Wartak, M. S. (2013). Computational photonics: an introduction with MATLAB. Cambridge
University Press.