THE EFFECT OF BALL MILLING ON THE MORPHOLOGY OF CUBIC BORON NITRIDE
Main Article Content
Abstract
Due to its attractive properties, cubic boron nitride (c-BN) finds extensive applications in mechanical and electronic industries. The conversion of micro c-BN to nano c-BN remarkably influences the properties. This study investigates the effect of ball milling on the morphological parameters. Boron nitride was subjected to different hours of ball milling process at different rotation speeds. The crystallite size of the c-BN was measured at different ball milling time intervals, and we observed that after 100 hours, the crystallite size decreased to nano size. The ball milling was increased to 150-175 hours to get less than 100 nm size particles. The surface morphology and elemental analysis of the samples were done using SEM and EDX studies. EDX confirmed the presence of boron and nitrogen in the sample. SEM images indicated that the agglomerated morphology of c-BN particles had an irregular shape. The cubic structure was confirmed from XRD studies. Thermogravimetric analysis (TGA) conducted to determine the samples' thermal stability indicated that weight loss was observed for temperatures up to 700oC. There was no significant weight loss at a higher temperature. Stronger reflectance was observed with increased ball milling time in UV-Visible DSR studies.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
ArkundatoA., HasanM., PurwandariE., PramutadiA.,& AzizF., "Temperature dependence diffusion coefficients of iron, boron and iron-boron calculated by molecular dynamics method" J. Phys.: Conf. Ser. (2019) 1170. doi:10.1088/1742-6596/1170/1/012008.
Arkundato A., Su'ud Z., Abdullah M., &Widayani "Inhibition of high corrosion in high temperature stagnant liquid lead: A molecular dynamics study." AIP Conf Proc 1244 (2010) 136. doi.org/10.1088/1742-6596/1170/1/012008.
AryaS. P. S.,& D'AmicoA., "Preparation, properties and applications of boron nitride thin films".Thin Solid Films, 157, (1988),267–282.doi.org/10.1016/0040-6090(88)90008-9
BassJ. D., SolovyovA., PascallA. J., KatzA., &AmJ. "Acid-Base Bifunctional and Di-electric Outer-Sphere Effects in Heterogeneous Catalysis: A Comparative Investigation of Model Primary Amine Catalysis". Chem. Soc., 128, (2016), 3737–3747.doi.org/10.1007/s10934-011-9546-x.
Brazhkin, Vadim V.; Solozhenko, Vladimir L. "Myths about new ultrahard phases: Why materials that are significantly superior to diamond in elastic moduli and hardness are impossible". J. Appl.Phys. 13,(2019),125. doi.org/10.1063/1.5082739.
Bennett T. D., & CheethamA. K., "Amorphous Metal-Organic frameworks". Acc. Chem. Res. 47, (2014), 1555–1562.
DavisR. F., "III-V nitrides for electronic and optoelectronic applications". Proc. IEEE, 79, (1991), 702. www.lib.ncsu.edu/resolver/1840.2/610
DeVriesC., "Recent advances in grinding". Research Conference Proceedings, 25, (1972), 178. doi.org/10.1007/978-1-4615-8300-410.
GielisseP. J., MitraS. S., PlendlJ. N., GriffisR. D., MansurL. C., MarshallR. & PascoeE. A., "Lattice infrared spectra of Boron Nitride and Boron mono phosphide". Phys. Rev., 155, (1967), 1039–1046. doi.org/10.1103/PhysRev.155.1039.
IshiiT., SatoT., SekikawaY., IwataM., "Growth of whiskers of hexagonal Boron Nitride", Crystal Growth, 52, (1981), 285-289. doi.org/10.1016/0022-0248(81)90206-2.
KesterD. J.,& R. Messier., "Mechanism of nucleation and growth of cubic-Boron Nitride thin films J. Appl. Phys., 72, (1992), 504–513.doi.org/10.1016/S1468-6996(01)00004-3.
Laurence Vel, Gerard Demazeau and Jean Etourneau "Cubic boron nitride: synthesis, physicochemical properties and applications". Mater. Sci. Eng. BIO (1991) 149-164. doi.org/10.1016/0921-5107(91)90121-B.
LeeD., LeeB., ParkK. H., RyuH. J., JeonS.,& HongS. H., "Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide assisted ball-milling". Nano Lett., 15, (2015), 1238–1244. doi.org/10.1038/srep07288.
Liu L., XiongZ., HuD., WuG., Liu B., & ChenP., "Solid Exfoliation of Hexagonal Boron Nitride Crystals for the Synthesis of Few-layer Boron Nitride Nanosheets". Chem. Lett., 42, (2013), 1415–1416. doi.org/10.1016/j.carbon.2014.10.008.
LuC.J., & LiZ.Q., "Thermodynamic aspects of nano structured Ti5Si3 formation during mechanical alloying and its characterization". J. Alloy. Compd. 395, (2005) 88.doi.org/10.1007/s12034-012-0298-2.
LuM., BousettaA., SukachR., BensaoulaA., WatersK., Eipers-SmithK. & SchultzJ. A., "Growth of c-BN on Si (100) by neutralized nitrogen ion bombardment". Appl. Phys. Lett., 64, (1994), 1514–1516.
MishimaO., EraK., TanakaJ.,&YamokaS., "Observation of a hexagonal BN surface layer on the cubic BN film grown by dual ion beam sputter deposition". Appl. Phys. Lett., 53, (1988), 962–964. doi.org/10.1063/1.118402.
Orellana-TavraC., BaxterE. F., TianT., BennettT. D., SlaterN. K. H., Cheetham A. K., &Fairen-JimenezD., "Amorphous metal-organic frameworks for drug delivery". Chem. Commun., 51, (2015), 13878–13881. doi.org/10.1039/C5CC05237H.
PouchJ. J.,&AlterovitzS. A., "Review of synthesis and properties of cubic boron nitride(c-BN) thin films". Brookfield, Trans Tech Publications. Proc. Mater. Sci. Forum, 54/55, (1990), 313–328. doi.org/10.1016/S0927-796X(97)00009-0.
ReddyL. M., SrivastavaA.,& GowdaS. R., et al., "Synthesis of nitrogen-doped graphene films for lithium battery application," ACS Nano.,4,(2010)6337–6342. doi.org/10.1021/nn101926g.
SongL., CiL., LuH., SorokinP. B., JinC., NiJ., KvashninA. G., KvashninD. G., LouJ., YakobsonB. I. & AjayanP. M., "Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers." Nano Letters, 10, (2010), 3209-3215. doi.org/10.4236/jct.2013.46A2001.
Shashikala, A R.; Mayanna, S M.; Sharma, A. Studies and characterization of electroless Ni–Cr -Palloycoating.TransIMF,(2007),85,6,320324.doi.org/10.1179/174591907X246483.
Shashikala, A. R.; Sridhar, B,S.Codeposition of electroless Ni-P/ZnO nano composites and evaluation of corrosion resistance of the coatings. Materials Today: Proceedings, (2021), 45, 4, 3837-3840. doi.org/10.1016/j.matpr.2020.05.447.
ToddR. H., AllenD. K., &AltingL., "Synthesis and preparation of mono-layer h-BN nano powders by using a combination of CVD method with iso-propanol- assisted exfoliation process". Manufacturing Processes Reference Guide, Industrial Press Inc., 55. N.Y. (1994), 43–48. doi.org/10.1007/s11106-017-9836-1.
VelL., DemazeauG.,& EtourneauJ., "Cubic-boron nitride: synthesis, physicochemical propertiesandapplications".Mater.Sci.Eng.B,10,(1991),149–164.doi.org/10.1016/0921-5107(91)90121-B.
Wada T., & YamashitaN., "Cross-sectional transmission electron microscopy observations of c-BN films deposited in Si by ion- beam-assisted deposition". J. Vac. Sci. Technol. A, 10, (1992),515–520. doi.org/10.1016/0040-6090(94)90297-6.
WangP., OrimoS., MatsushimaT., FujiiH.,&MajerG., "Synthesis of boron nitride nano fibers and measurement of their hydrogen uptake capacity". Appl. Phys. Lett., 80, (2002), 318–320. doi.org/10.1016/S0008-6223(03)00302-6.
WentorfR. H., Jr: "Preparation of semiconducting Cubic Boron Nitride". J. Chem. Phys., 36, (1962), 1990–1991. doi.org/10.1063/1.1732816.
XiaZ.P.,&LiEtourneauZ.Q.“Structural evolution of hexagonal BN and cubic BN duringballmilling" J.Alloy.Compd.43(2007)170-173.doi.org/10.1016/j.jallcom.2006.06.100.
XiaZ.P., LiZ.Q., LuC.J., ZhangB., &ZhouY., "Structural evolution of Al/BN mixture during mechanical alloying". J. Alloy. Compd. 399, (2005), 139.doi.org/10.1016/j.jallcom.2005.03.087.
ZhiC. Y., BandoY.,& TangC. C, et al., "Large scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties," Adv. Mater., 21, (2009) 2889–2893.doi.org/10.1002/adma.200900323.