INVESTIGATING THE GROUND ENERGY DISTRIBUTION OF PARTICLES PRODUCED IN EXTENSIVE AIR SHOWERS
Main Article Content
Abstract
The energy spectra of particle arrive the ground is a significant observable in the analysis of extensive air showers (EAS). The energy distribution at ground is studied for (12C,56Fe, p, and 28Si ) primary particles with high primary energies (1017, 1018, 1019 and 1020) eV with two zenith angles 0o and 30o. 960 EAS showers are simulated using Monte-Carlo program Aires version (19.04.00) with the models of hadronic interaction (EPOS-LHC, QGSJET-II-04, and Sibyll2.3c). In this study we investigated various secondary particles that arrive the ground and deposit a portion of their energy on ground detectors. The analyzed results show that the distinction in the energy distribution at ground is bigger for primary proton than carbon, iron nuclei, and silicon at higher energies and vertical showers.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Aab A. et al. [Pierre Auger Collaboration], Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV, Phys. Rev. D vol.90, no. 12, (2014).
Aartsen M.G., et al, Measurement of the cosmic ray energy spectrum with IceTop-73, Phys. Rev. D88, 042004, (2013).
Ahn E. J., et al., Cosmic ray interaction event generator Sibyll 2.1, Phys. Rev. D80, 094003 (2009).
Al-Rubaiee A. A., J. Astrophys. Astr., 35, pp. 631–638(2014).
AL-Rubaiee A. A., Jassim H.A.,and Al-Alawy I. T., J. Astrophys. Astr., pp.42, 52(2021)
Alvarez-Muniz J., et al., Hybrid simulations of extensive air showers, Phys. Rev. D66, 033011 (2002).
Bellido J. [Pierre Auger Collaboration], Depth of maximum of air-shower profiles at the Pierre Auger Observatory: Measurements above 1017.2 eV and Composition Implications, PoS ICRC (2017).
Bergmann T., et al, One-dimensional Hybrid Approach to Extensive Air Shower Simulation, Astropart. Phys. 26, 420 (2007).
Blümer J., Engel R., Hörandel J. R., Cosmic Rays from the Knee to the Highest Energies, Prog. Part. Nucl. Phys. 63, 293 (2009).
Heitler W., "The Quantum Theory of Radiation" (Oxford University Press) (1954).
Hillas A. M. et al., Proc. 12th ICRC 3,pp.1001-1006, (1971).
Joachim Drescher H., et al., Model Dependence of Lateral Distribution Functions of High Energy Cosmic Ray Air Showers, astro-ph/0307453v2, (2003).
Klages H. O., for the KASCADE Collaboration, The status of the extensive air shower experiment KASCADE Proc.25th ICRC.,6, pp-141-144, (1997)
Knapp J. et al. Extensive air shower simulations at the highest energies, Astropart. Phys. 19, pp77-99, (2003).
Linsley J., Proceedings of 15th ICRC (Plovdiv)8, pp, 207-210(1977).
Matthews J., A Heitler model of extensive air showers, Astropart. Phys. 22 pp387-397, (2005).
Matthews J., Energy Flow in Extensive Air Showers, Proc. 27th ICRC, Hamburg, p. 261, (2001).
Ostapchenko S., Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model, Phys. Rev. D. 83, 014018 (2011).
Pierog T., et al., EPOS LHC: test of collective hadronization with LHC data, Phys. Rev. C. 92, 034906(2015).
Pierog T., et al., Impact of Uncertainties in Hadron Production on Air-Shower Prediction, J. Phys. 56, A161 (2006).
Renyi Ma, Dongsu Ryu & Hyesung Kang, J. Astrophys. Astr., 32, pp. 301–302, (2011)
Sciuttu S.J., AIRES user's guide and reference manual, version 2.6.0. La Plata, Argentina, (2002).
Soonyoung R. et al., Astroparticle Physics, Vol. 44, pp. 1-8, (2013)