MICROFACIES OF LATE PLEISTOCENE TRAVERTINE DEPOSITS IN JORDAN
Main Article Content
Abstract
The Late Pleistocene travertine outcrops from Deir Alla, Suwayma, and Az Zara were investigated, and their microfacies were identified. The microfacies of the Deir Alla travertines include micrite and spar groundmass, shrubs, crystalline crusts, a stromatolite-like structure, peloids, and cements. Shrub travertine includes spar calcite-coated stems with probably microbial micritic clumps. The crystalline crust travertine displays an alternation of micrite and sparite laminae. The micritic laminae are dark-coloured. Bundles of radial spar crystals are associated locally with micritic groundmass. The crystalline crust developed where biogenic activity is limited. Peloidal microfacies are less than 0.25 mm in diameter, cryptocrystalline, pale-dark green in colour, elliptical to spherical in shape, and usually associated with microorganisms. The microfacies of the Suwayma and Az Zara travertines include crystalline calcite rhombs and other composite scalenohedral crystals. They occur as small anhedral-subhedral crystals, monocrystalline to some polycrystalline, corroded, subrounded, and mainly coated with iron oxide and/or clay minerals. Peloids, ooids, and oncoids are common. They are dark-green coloured, cryptocrystalline to microcrystalline carbonates of spherical and ellipsoidal shape with less than 1 mm in diameter. Rich flora travertines include reed and paper-thin rafts with leaf impressions encrusted on moss cushions. The flora observed in the upper part of the Suwayma section was identified as charophyte oospores (gyrogonites). A few grains of quartz are present as small subhedral-euhedral crystals, monocrystalline, corroded, rounded, and mainly coated with iron oxide. The iron is irregularly distributed among the laminae and voids and is occasionally replaced by carbonates. The described macrophyte encrustation structures probably represent algae, cyanobacteria, or bryophytes. All samples of micrite and spar calcite appear as groundmass.
Downloads
Article Details
Licensee MJS, Universiti Malaya, Malaysia. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
References
Abu Ajamieh, M. (1980). The Geothermal Resources of Zarqa Ma'in and Zara. Amman, Jordan.
Abu Ghazleh, S., Kempe, S. (2009). Geomorphology of Lake Lisan terraces along the eastern coast of the Dead Sea, Jordan. Geomorphology: 108, 246–263.
Al-Thawabteh, S.M. (2006). Sedimentology, Geochemistry, and Petrographic Study of Travertine Deposits along the Eastern Side of the Jordan Valley and Dead Sea Areas. Master’s Thesis, Hashemite University, Zarqa, Jordan.
Bhattacharyya, D.P., Kakimoto, P.L. (1982). Origin of ferriferous ooids: a SEM study of ironstone ooids and bauxite pisoids. J. Sedimentary Petrology: 52, 849–857.
Capezzuoli, E., Gandin, A., Pedley, M. (2014). Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology: 61, 1–21. doi: 10.1111/sed.12075
Chafetz, H. S., Folk, R. L. (1984). Travertine: Depositional morphology and the bacterially constructed constituents. Sedimentary Petrology: 54, 289-316.
Chafetz, H. S., Guidry, S. A. (1999). Bacterial shrubs, crystal shrubs, and ray-crystal crusts: Bacterially induced vs a biotic mineral precipitation, Sediment. Geo: 126, 57-74.
Claes, H., Soete, J., Van Noten, K., El Desouky, H., Marques Erthal, M., Vanhaecke, F., Ozkul, M., Swennen, R. (2015). Sedimentology, three-dimensional geobody reconstruction and carbon dioxide origin of Pleistocene travertine deposits in the Ballık area (south-west Turkey). Sedimentology 62(5): 1408-1445. http:// dx.doi.org/10.1111/sed.12188.
Claes, H., Erthal, M.M., Soete, J., Ozkul, M., Swennen, R. (2017). Shrub and pore type classification: Petrography of travertine shrubs from the Ballık-Belevi area (Denizli, SW Turkey). Quaternary International 437: 1-17. DOI: 10.1016/j.quaint.2016.11.002
Croci, A., Della Porta, G., Capezzuoli. E. (2016). Depositional architecture of a mixed travertine-terrigenous system in a fault-controlled continental extensional basin (Messinian, Southern Tuscany, Central Italy). Sedimentary Geology 332: 13-39.
Della Porta, G. (2015). Carbonate build-ups in lacustrine, hydrothermal and fluvial settings: comparing depositional geometry, fabric types and geochemical signature. Geological Society, London, Special Publications 418: 17-68,
https://doi.org/10.1144/SP418.4.
Della Porta, G., Croci, A., Marini1, M., Kele, S. (2017a). Depositional Architecture, Facies Character and Geochemical Signature of the Tivoli Travertines (Pleistocene, Acque Albule Basin, Central Italy). Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) 123(3): 487-540.
Della Porta, G., Capezzuoli, E., De Bernardo, A. (2017b). Facies character and depositional architecture of hydrothermal travertine slope aprons (Pleistocene, Acquasanta Terme, Central Italy). Marine and Petroleum Geology 87: 171-187. https://doi.org/10.1016/j.marpetgeo.2017.03.014.
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96: 141.
Evans, J. E. (1999). Recognition and implications of Eocene tufas and travertines in the Chadron Formation, White River Group, Badlands of South Dakota. Sedimentology 46: 771-789.
Folk, R. L., Chafetz, H. S., Tiezzi, P. A. (1985). Bizarre forms of depositional and diagenetic calcite in hot springs travertines, Central Italy. In: Schneidermann, N. and Harris, P. (editors), Carbonate Cements. Society of Economic Paleontologists and Mineralogists, Special Publication: 36, Tulsa, Oklahoma.
Ford, T.D., Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews 41: 117-175.
Freytet, P., Verrecchia, E. P. (2002). Lacustrine and palustrine carbonate petrography: an overview, Journal of Paleolimnology 27: 221–237.
Greensmith, J. T. (1978). Petrography of the Sedimentary Rocks. 6th. edition. George Allen and UNWIN, London.
Guo, L., Riding, R. (1998). Hot spring travertine facies and sequence, Late Pleistocene, Rapolano Terme, Italy. Sedimentology 45: 163-180.
Hasan, M. R., Chakrabarti, R. (2009). Use of algae and aquatic macrophytes as feed in small-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper No.531 pp.
Ibrahim, K. M., Makhlouf, I. M., El Naqah, A. R., Al-Thawabteh, S. M. (2017). Geochemistry and Stable Isotopes of Travertine from Jordan Valley and Dead Sea Areas. Mineralogy 7(6): 82.
Kahle, C. F. (1977). Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicritization. Sedimentology 24: 413-435.
Kanellopoulos, C., Thomas, C., Xirokostas, N., Ariztegui, D. (2018). Banded Iron Travertines at the Ilia Hot Spring (Greece): An interplay of biotic and abiotic factors leading to a modern Banded Iron Formation analogue? Depositional Record 5: 109-130. https://doi.org/10.1002/dep2.55
Kitano, Y. (1963). Geochemistry of calcareous deposits found in hot springs. J. Earth Sciences 11: 68-100. Nagoya University.
Love, K. M., Chafetz, H. S. (1988). Diagenesis of laminated travertine crusts, Arbuckle Mountains, Oklahoma. J. Sedimentary Petrology 58: 441-445.
Love, K. M., Chafetz, H. S. (1990). Petrology of Quaternary travertine deposits, Arbuckle Mountains, Oklahoma. In: Hermann, J. S. and Hubbard Jr., D. A. (editors), Travertine-marl: Stream Deposits of Virginia. Virginia Division of Mineral Resources Publication 101, Charlottesville, Va. (Virginia Division of Mineral Resources).
Macintyre, I.G., Prufert-Bebout, L., Reid, R.P. (2000). The role of endolithic cyanobacteria in the formation of lithified laminae in Bahamas stromatolites. Sedimentology 47, 915–921.
Obeidat, O. (1992). Geochemistry, Minerology, and Petrography of Travertine of Deir Alla and Zerqa Ma'in Hot Springs. Unpublished M.Sc. Thesis, Yarmouk University. Irbid, Jordan.
Özkul, M., Varol, B., Alçiçek, C. (2002). Depositional environments and petrography of Denizli travertines. Bulletin of the Mineral Research and Exploration 125: 13-29.
Özkul, M., Gökgöz, A., Kele, S., Baykara, M. O., Shen, C., Chang,Y., Kaya, A., Hançer, M., Aratman, C., Akin, T., Örü, Z (2014). Sedimentological and geochemical characteristics of a fluvial travertine: A case from the eastern Mediterranean region. Sedimentology 61: 291-318.
Pache, M., Reitner, J., Arp, G. (2001). Geochemical evidence for the formation of a large Miocene "travertine" mound at a sublacustrince spring in a soda lake (Wallertein Casrtle Rock, Nördinger Ries, Germany). Facies 45: 311-330.
Pedley, H. M. (1994). Prokaryote-microphyte biofilms and tufas: a sedimentological perspective. Kaupia 4: 45-60.
Pentecost, A. (1990). Calcification processes in algae and cyanobacteria. p. 3-20. In R. Riding, éd., Calcareous algae and stromatolites. Springer-Verlag, Berlin: 569 p.
Pentecost, A. (2005). Travertine. 1st. edition. Springer, London.
Pola, M., Fabbri, P., Piccinini, L., Zampieri, D. (2013). A new hydrothermal conceptual and numerical of the Euganean Geothermal System – NE Italy. Bollettino della Società geologica italiana 24: 251–253.
Reolid, M., Rodríguez-Tovar, F.J., Nagy, J., Olóriz, F. (2008). Benthic foraminiferal morphogroups of mid to outer shelf environments of the Late Jurassic (Prebetic Zone, Southern Spain): Characterization of biofacies and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 261: 280-299.
Riding, R. (2000). Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology: 47, 179-214.
Soulié-Märsche, I., García, A. (2015). Gyrogonites and oospores, complementary viewpoints to improve the study of the charophytes (Charales), Aquatic Botany 120, (A): 7-17. https://doi.org/10.1016/j.aquabot.2014.06.003
Suosaari, E. P., Reid, R. P., Oehlert, A. M., Playford, P. E., Steffensen, C. K., Andres, M. S., Suosaari, G.V., Milano, G.P., Eberli, G. P. (2019). Stromatolite provinces of hamelin pool: Physiographic controls on stromatolites and associated lithofacies. Journal of Sedimentary Research 89(3): 207–226. https://doi.org/10.2110/jsr.2019.8
Visscher, P.T., Reid, R.P., Bebout, B.M. (2000). Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 28: 919–922.