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Abstract  
 
Bayesian restricted Stein-rule least squares is a novelty estimator introduced to 
obtain parameters of the family of restricted least squares with intertwined 
heteroscedastic and autocorrelated disturbance errors. Errors in regression 
modelling set to measure the quality of the data and/or model of which intertwining 
of most prominent errors disturbances play a significant role in determining the 
quality of the data and/or model. Efforts were geared towards the comparison of 
the performances and relative efficiency of the small sample property of Bayesian 
and classical family of restricted Stein-rule least squares. The sample size was set 
at 25 to capture the intertwined disturbance errors, and the iteration of the Monte 
Carlo simulation was set at 10000 for both classical and Bayesian paradigms. The 
ρ and ∅ for both Autoregressive of order one (AR(1)) and Moving average of order 
one (MA(1)) processes respectively were set asymmetrically as -0.8,-0.5,-0.3, 
0,0.3,0.5 and 0.8 while δ as a scale of heteroscedasticity was set at 0-
homoscedasticity, -0.3-mild,-0.5-moderate and 1-severe.  The outcome of the 
study pointed out that Bayesian estimation (posterior mean and Bayes estimates) 
for restricted least squares and restricted Stein-rule estimators outperformed 
classical restricted and restricted Stein-rule estimators both in performances and 
relative efficiency measurements. It is therefore recommended to make use of the 
Bayesian framework when encountering similar disturbances in a small sample 
size. 
 
Keywords: Autocorrelated error, Bayesian and intertwine JEL Classification: 
C01, C11 and C15, Heteroscedasticity, Restricted, Stein-rule 

 
   
1. Introduction 
 
Errors in regression modelling set to measure the quality of the data and/or model of which intertwining 
of most prominent error disturbances play a significant role in determining the quality and standard of 
the data and/or model.  In econometrics research, the prominent disturbances usually faced by the 
analyst are autocorrelated and heteroscedastic disturbance errors. Independently, studies had been 
carried out on Bayesian estimation with heteroscedasticity disturbance error, Oloyede et al. (2013), 
Tanizaki (2003), Chib (1993), Chib and Greenberg (1994) where it was affirmed that the presence of 
such disturbance error in the data or model renders inferences of the parameter estimates invalid. 

Adjibolosoo (1993) investigated the efficiency of estimators under various heteroscedastic error 
structures and concluded that an exponential family of heteroscedastic error structures would bring 
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about efficient parameter estimates for improved statistical inference. Both heteroscedasticity and 
autocorrelated disturbance errors violated the assumption of ordinary least squares and render it 
inefficient and inconsistent.  Balu and Harry (1983) examined a Monte Carlo study of linear regression 
with intertwined autocorrelated and heteroscedastic disturbance errors, thus found out that when the 
magnitude of sample size is small, ordinary least squares are as good as other estimators when measured 
with mean square error. But if the magnitude of the sample is large their modified Durbin and U-hat 
estimators outperformed all other estimators considered in their studies. This idea contravenes the idea 
of Bayesian inference which pointed out that a large sample size makes both classical and Bayesian 
converge.   

Liya and You-Gan (2021) examined regression with asymmetric loss function and found out that 
their proposed method outperformed other algorithms considered in their study.   Özbay et al. (2017) 
examined both multicollinearity and autocorrelation of error as twin non-spherical disturbances 
simultaneously, their study concluded that their proposed estimator outperformed other estimators 
deemed in a Monte Carlo simulation paradigm for both AR(1) and MA(1) processes. Chaturvedi et al. 
(1993) examined the performance of the Stein-rule estimator with mis-specified spherical disturbances 
and observed the effect of non-spherical disturbance in the dominant condition underlying Stein-rule 
estimators. Their study derived asymptotic risk properties of the estimator under a quadratic loss 
function. 

Mary et al. (2011) examined generalized partial linear models with shape-restricted splines and 
pointed out that their method has desirable Bayesian and frequentist properties. Their method performed 
similar to standard parametric methods when the parametric assumptions are met and is superior when 
the assumptions are violated. Scott and Valen (2016) examined the restricted powerful Bayesian test 
and found out that the rejection region is more or less similar to the frequentist F-test. Oloyede (2022) 
compared the Bayesian and classical families of restricted least squares estimators when covariates are 
collinear and found out that Bayesian estimates (posterior mean and Bayes estimates) outperformed 
classical restricted least squares. Lewis et al. (2021) examined Bayesian restricted likelihood methods 
having outliers’ datasets and model misspecification, thus provided an alternative approach to the 
drawback identified from the previous studies they reviewed, they are of the opinion that their proposed 
estimator has the better predictive solution. 

The contribution of this study is on the premise that the small sample property of restricted Stein-
rule estimators with an intertwining of heteroscedasticity and autocorrelated error has not been featured 
in the literature for both classical and Bayesian framework. This study fills this gap. The paper is 
arranged as follows: sequel to section one which covered the introductory aspect of the study is the 
section 2 which discussed model design that captures autocorrelated error of both AR(1) and MA(1) 
processes, then we have heteroscedasticity, model performance metrics and design of Monte Carlo 
simulation. Section 3 discussed data analysis and interpretation while the section four discusses the 
conclusion.  
 
2. Restricted Stein-rule Design 
 
Let 𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑢𝑢 be the linear regression model where y is an 𝑛𝑛 × 1 set of observations on the regressand, 
X is a set of 𝑛𝑛 × 𝑝𝑝 full column rank of regressors, 𝑋𝑋 is 𝑝𝑝 × 1 vectors of unknown parameters while u is 
an 𝑛𝑛 × 1 vectors of disturbance error not necessarily well behave which ordinarily intertwine with both 
heteroscedastic and autocorrelated errors. 

Let there be m linearly independent restriction that constrain the regression coefficients such that 
 

𝑟𝑟 = 𝑅𝑅𝑋𝑋  
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where 𝑟𝑟 is an 𝑚𝑚 × 1 vector and 𝑅𝑅 is an 𝑚𝑚 × 𝑝𝑝 matrix of rank 𝑚𝑚 < 𝑝𝑝. The AR(1)  with heteroscedastic 
is expressed as 
 

Ω�Ψ�𝐴𝐴𝐴𝐴 = 𝜎𝜎𝑢𝑢2

1−𝜌𝜌2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ Ω11      𝜌𝜌     𝜌𝜌2      .      .     .      𝜌𝜌𝑛𝑛−1

𝜌𝜌     Ω12      𝜌𝜌      .       .      .      𝜌𝜌𝑛𝑛−2

𝜌𝜌2    𝜌𝜌      Ω13     .      .    .         𝜌𝜌𝑛𝑛−3
.          .       .        .       .        .              .
.          .       .        .       .        .              .
.          .       .        .       .        .              .
𝜌𝜌𝑛𝑛−1     𝜌𝜌𝑛𝑛−2        𝜌𝜌𝑛𝑛−3      .    .   .  Ω1𝑛𝑛⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    

           
The MA(1)  with heteroscedastic is expressed as 
  

Ω�Ψ�𝑀𝑀𝐴𝐴 = 𝜎𝜎𝑢𝑢2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ (1 + 𝜙𝜙2)Ω11      𝜙𝜙     .    .      .     .      .
𝜙𝜙     (1 + 𝜙𝜙2)Ω12      𝜙𝜙      .       .      .      .
.    𝜙𝜙     (1 + 𝜙𝜙2)Ω13      𝜙𝜙      .    .         .

     .       .        .       .        .              .
     .       .        .       .     .             .

      .       .        .       .       .      .     . .  
 .        .     .      .    .     (1 + 𝜙𝜙2)Ω1𝑛𝑛 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

  
 𝜙𝜙 ranges between -1 and 1,  the generalized restricted least squares (GRLS) estimates is obtained as 
follow, adopting  the criterion of minimising the sum of squares (𝑦𝑦 − 𝑋𝑋𝑋𝑋)’Ω�Ψ�(𝑦𝑦 − 𝑋𝑋𝑋𝑋) subject to the 
condition that Rβ = r. This leads to the Lagrangean function 
 

𝐿𝐿 =  (𝑦𝑦 −  𝑋𝑋𝑋𝑋)′Ω�Ψ�(𝑦𝑦 −  𝑋𝑋𝑋𝑋)  +  2𝜆𝜆′(𝑅𝑅𝑋𝑋 −  𝑟𝑟)                (2.1) 
    =  𝑦𝑦’Ω�Ψ�𝑦𝑦 −  2𝑦𝑦’Ω�Ψ�𝑋𝑋𝑋𝑋 +  𝑋𝑋’𝑋𝑋’Ω�Ψ�𝑋𝑋𝑋𝑋 +  2𝜆𝜆’𝑅𝑅𝑋𝑋 –  2’𝑟𝑟    

               
Differentiate L with respect to 𝑋𝑋 and setting it to zero  
 

− 2𝑦𝑦’Ω�Ψ�𝑋𝑋 +  2𝑋𝑋’𝑋𝑋’Ω�Ψ�𝑋𝑋 +  2𝜆𝜆’𝑅𝑅 = 0      
               − 𝑦𝑦’Ω�Ψ�𝑋𝑋 +  𝑋𝑋’𝑋𝑋’Ω�Ψ�𝑋𝑋 +  𝜆𝜆’𝑅𝑅 = 0      
          𝑋𝑋’𝑋𝑋’Ω�Ψ�𝑋𝑋  =  𝑋𝑋′Ω�Ψ�𝑦𝑦 − 𝜆𝜆’𝑅𝑅      

              𝑋𝑋 =  �𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝑋𝑋′Ω�Ψ�𝑦𝑦 − �𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝜆𝜆’𝑅𝑅             (2.2) 

            �̂�𝑋𝐴𝐴  =  �̂�𝑋 − �𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝜆𝜆’𝑅𝑅                    (2.3) 
 
where �̂�𝑋 is unrestricted least squares estimates, note that 𝑟𝑟 = 𝑅𝑅�̂�𝑋𝐴𝐴, multiply both sides by 𝑅𝑅 we have 
  

              𝑅𝑅𝑋𝑋�𝐴𝐴  =  𝑅𝑅�̂�𝑋 − 𝑅𝑅�𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝜆𝜆’𝑅𝑅                  (2.4) 

             𝑟𝑟 =  𝑅𝑅�̂�𝑋 − 𝑅𝑅�𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝜆𝜆’𝑅𝑅    

             𝑟𝑟 −  𝑅𝑅�̂�𝑋  = −𝑅𝑅�𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝜆𝜆’𝑅𝑅          

�𝑅𝑅�𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝑅𝑅�
−1
� 𝑅𝑅�̂�𝑋 − 𝑟𝑟�  = 𝜆𝜆                 

�̂�𝑋𝐴𝐴  =  �̂�𝑋 − �𝑋𝑋’Ω�Ψ�𝑋𝑋�−1 �𝑅𝑅�𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝑅𝑅�
−1
𝑅𝑅� 𝑅𝑅�̂�𝑋 − 𝑟𝑟�        



Oloyede/https://doi.org/10.22452/josma.vol5no2.2       Vol 5(2), 11-22. 2023 
 

14 
 

�̂�𝑋𝐴𝐴  =  �̂�𝑋 + �𝑋𝑋’Ω�Ψ�𝑋𝑋�−1 �𝑅𝑅�𝑋𝑋’Ω�Ψ�𝑋𝑋�−1𝑅𝑅�
−1
𝑅𝑅�𝑟𝑟 −  𝑅𝑅�̂�𝑋� (2.5) 

   
thus �̂�𝑋𝐴𝐴 is a constrained estimate, following Chaturvedi et al. (2001), the restricted Stein-rule version of 
interwine disturbance errors can be expressed as:  
 

�̂�𝑋𝑆𝑆 = �1 − 𝑎𝑎
𝑛𝑛
�𝑦𝑦−𝑋𝑋𝛽𝛽��′Ω�Ψ��𝑦𝑦−𝑋𝑋𝛽𝛽��

𝛽𝛽�𝑋𝑋Ω�Ψ�𝑋𝑋𝛽𝛽�
� �̂�𝑋  

            
From the above Stein-rule estimator, restricted Stein-rule can be expressed as:  
 

�̂�𝑋𝐴𝐴𝑆𝑆 = �̂�𝑋𝑆𝑆 + �𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′ �𝑅𝑅�𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′�
−1
�𝑟𝑟 − 𝑅𝑅�̂�𝑋𝑆𝑆�                 (2.6)           

 
where Ω�Ψ� = ΩΨ(𝑏𝑏), b is a consistent and efficient estimator of 𝑋𝑋, thus 𝑏𝑏 = �𝑋𝑋′Ω�Ψ�𝑋𝑋�−1�𝑋𝑋′Ω�Ψ�𝑦𝑦�, 
following Chaturvedi and Shukla (1990), we have modified Stein-rule estimator of 𝑋𝑋. 
  
2.1 Bayesian Restricted Least Squares Estimator 
 
Theorem: the restricted posterior density of restricted 𝑋𝑋  and 𝜎𝜎 is obtained through marginalising of the 
conjugate of normal-inverse gamma and restricted likelihood since both are of the same family of 
distribution Oloyede (2022). 
 
The linear model is express as: 
 

𝑦𝑦 = 𝑋𝑋𝑋𝑋𝐴𝐴 + 𝑢𝑢                          (2.7) 
 

The likelihood function of 𝑋𝑋 ,X and y , where 𝜃𝜃 = (𝑋𝑋, 𝜆𝜆) given  sample vectors 𝑋𝑋1,𝑋𝑋2 =
(1,2, … ,𝑛𝑛)′ and 𝑦𝑦 = (𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑛𝑛)′ and incorporating restricted 𝑋𝑋𝐴𝐴 is expressed as 

 

𝐿𝐿(𝑋𝑋𝐴𝐴 ,𝜎𝜎2|𝑋𝑋,𝑦𝑦) = (2𝜋𝜋𝜎𝜎2)−
𝑛𝑛
2𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎2
(𝑦𝑦 − 𝑋𝑋𝑋𝑋𝐴𝐴)′Ω�Ψ�(𝑦𝑦 − 𝑋𝑋𝑋𝑋𝐴𝐴)�               (2.8) 

 

Simplify further, (2𝜋𝜋)−
𝑛𝑛
2 is omitted since it is a constant which ordinary contribute no significant effect, 

Oloyede (2022) 
 

𝐿𝐿(𝑋𝑋𝐴𝐴 ,𝜎𝜎2|𝑋𝑋,𝑦𝑦) ∝ 𝜎𝜎−𝑛𝑛𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝑦𝑦′Ω�Ψ�𝑦𝑦 − 2𝑋𝑋𝐴𝐴
′𝑋𝑋′Ω�Ψ�𝑦𝑦 + 𝑋𝑋𝐴𝐴′𝑋𝑋′Ω�Ψ�𝑋𝑋𝑋𝑋𝐴𝐴��                   (2.9) 

 

𝐿𝐿(𝑋𝑋𝐴𝐴 ,𝜎𝜎2|𝑋𝑋,𝑦𝑦) ∝ 𝜎𝜎−𝑛𝑛𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝑦𝑦′Ω�Ψ�𝑦𝑦 − 2𝑋𝑋𝐴𝐴
′𝑋𝑋′Ω�Ψ�𝑦𝑦 + 𝑋𝑋𝐴𝐴

′𝑋𝑋′Ω�Ψ�𝑋𝑋𝑋𝑋𝐴𝐴 −

2 ��𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑋𝑋′Ω�Ψ�𝑦𝑦�
′
𝑋𝑋′Ω�Ψ�𝑦𝑦 + 2 ��𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑋𝑋′Ω�Ψ�𝑦𝑦� ′𝑋𝑋′Ω�Ψ�𝑋𝑋 ��𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑋𝑋′Ω�Ψ�𝑦𝑦���                                                                                                                   

= 𝜎𝜎−𝑛𝑛𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

(𝑦𝑦 − 𝑋𝑋𝑏𝑏𝐴𝐴)′Ω�Ψ�(𝑦𝑦 − 𝑋𝑋𝑏𝑏𝐴𝐴) + 𝑏𝑏𝐴𝐴
′𝑋𝑋′Ω�Ψ�𝑋𝑋𝑏𝑏𝐴𝐴 +   𝑋𝑋𝐴𝐴

′𝑋𝑋′Ω�Ψ�𝑋𝑋𝑋𝑋𝐴𝐴 − 2𝑋𝑋′𝑋𝑋′Ω�Ψ�𝑋𝑋𝑏𝑏�                                                

= 𝜎𝜎−𝑛𝑛𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)��                       
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Setting the priors 
 

𝑝𝑝(𝑋𝑋𝐴𝐴|𝜎𝜎2) = (2𝜋𝜋)−
𝑘𝑘
2�Ω�Ψ��−

1
2𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2
(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)�                                                                       

𝑝𝑝(𝜎𝜎2) ∝ 𝜎𝜎−(𝑎𝑎−𝑘𝑘)𝑒𝑒𝑒𝑒𝑝𝑝 �− 𝑏𝑏
𝜎𝜎2
�  

                        
Note, normal-inverse gamma priors are conjugate priors and were selected because the prior and 

posterior densities are of the same family of distributions Oloyede (2022).  
 

𝑝𝑝(𝑋𝑋𝐴𝐴|𝜎𝜎2)𝑝𝑝(𝜎𝜎2) = (2𝜋𝜋)−
𝑘𝑘
2�Ω�Ψ��−

1
2𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2
(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋 − 𝔹𝔹)� × 𝜎𝜎−(𝑎𝑎−𝑘𝑘)𝑒𝑒𝑒𝑒𝑝𝑝 �− 𝑏𝑏

𝜎𝜎2
�            (2.10) 

 
𝑝𝑝(𝑋𝑋𝐴𝐴|𝜎𝜎2)𝑝𝑝(𝜎𝜎2) = 𝜎𝜎−(𝑎𝑎−𝑘𝑘)𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎2
(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹) + 2𝑏𝑏�                 (2.11) 

 
𝑛𝑛 × 𝑘𝑘 size of 𝑋𝑋 matrix, 𝑋𝑋𝐴𝐴 unknown parameters, 𝔹𝔹 prior mean vector of beta (true value), 𝜎𝜎2 prior 

variance for beta, 𝜎𝜎�2 = (𝑦𝑦−𝑋𝑋𝛽𝛽𝑅𝑅)Ω�Ψ� (𝑦𝑦−𝑋𝑋𝛽𝛽𝑅𝑅)
𝑛𝑛−𝑘𝑘

, 𝑎𝑎 − 𝑘𝑘 is first hyper-parameter and 𝑏𝑏 second hyper-
parameter. 
 
Joint posterior density, 
 

𝜋𝜋(𝑋𝑋𝐴𝐴 ,𝜎𝜎2|𝑋𝑋,𝑦𝑦) ∝ 𝜎𝜎−𝑛𝑛𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)�� ×

𝜎𝜎−(𝑎𝑎−𝑘𝑘)𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹) + 2𝑏𝑏�     
                                                              

∝ 𝜎𝜎−𝑛𝑛−𝑎𝑎+𝑘𝑘𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴) + 2𝑏𝑏 + 𝜎𝜎2(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 −

𝔹𝔹)��       
                   
In an attempt to obtain marginal distribution of  𝑋𝑋𝐴𝐴, there is need to have Jacobian transformation after 
𝜎𝜎2  is replaced with 𝑠𝑠 , 
 

𝐽𝐽 = �
𝑑𝑑
𝑑𝑑𝑠𝑠
𝜎𝜎� = �

𝑑𝑑
𝑑𝑑𝑠𝑠
𝑠𝑠−

1
2� =

1
2
𝑠𝑠−

3
2 

 
Replace 𝜎𝜎2 with 𝑠𝑠  
 

∝ �𝑠𝑠−
1
2�
−𝑛𝑛−𝑎𝑎+𝑘𝑘

𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2
𝑠𝑠 �𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴) + 2𝑏𝑏 + 𝑠𝑠−1(𝑋𝑋𝐴𝐴 −

𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)�� �1
2
𝑠𝑠−

3
2�                                                   

                   
Integrate w.r.t s –nuisance parameter in order to obtain 𝑋𝑋 
 

= ∫ 1
2
𝑠𝑠
𝑛𝑛+𝑎𝑎−𝑘𝑘−3

2 𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2
𝑠𝑠 �𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴) + 2𝑏𝑏 + 𝑠𝑠−1(𝑋𝑋𝐴𝐴 −

∞
0

𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)�� 𝑑𝑑𝑠𝑠                     
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Recall 

1 = ∫ 𝑞𝑞𝑝𝑝+1

Γ(𝑝𝑝+1) 𝑠𝑠
𝑝𝑝𝑒𝑒−𝑞𝑞𝑞𝑞𝑑𝑑𝑠𝑠∞

0             

                 
Γ(𝑝𝑝+1)
𝑞𝑞𝑝𝑝+1

= ∫ 𝑠𝑠𝑝𝑝𝑒𝑒−𝑞𝑞𝑞𝑞𝑑𝑑𝑠𝑠∞
0                              (2.12) 

 
where 𝑝𝑝 = 𝑛𝑛+𝑎𝑎−𝑘𝑘−3

2
 

 
𝑞𝑞 = 1

2
�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴) + 2𝑏𝑏 + 𝑠𝑠−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)�     

  (36) with degree of freedom as  𝑣𝑣 = 𝑛𝑛 − 𝑘𝑘 
 

𝜋𝜋(𝑋𝑋|𝑝𝑝, 𝑞𝑞) ∝ 𝑞𝑞−(𝑝𝑝+1) = 𝑞𝑞−
𝑛𝑛
2  

                          
then replace it 
 
𝜋𝜋(𝑋𝑋|𝑝𝑝, 𝑞𝑞) ∝ 1

2
�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴) + 2𝑏𝑏 + 𝑠𝑠−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 −

𝔹𝔹)�
−�𝑛𝑛+𝑎𝑎−𝑘𝑘−12 �

    
     
To obtain 
 

 𝜋𝜋(𝜎𝜎|𝑋𝑋,𝑦𝑦) ∝ ∫ 𝜎𝜎−𝑛𝑛−𝑎𝑎+𝑘𝑘𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘) + (𝑋𝑋𝐴𝐴 − 𝑏𝑏)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝐵𝐵) + 2𝑏𝑏 +∞
0

𝜎𝜎2(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)�� 𝑑𝑑𝑋𝑋𝐴𝐴          
                                                                  
𝜋𝜋(𝜎𝜎|𝑋𝑋,𝑦𝑦) ∝ ∫ 𝜎𝜎−𝑛𝑛−𝑎𝑎+𝑘𝑘𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎2
�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘)�� × ∫ 𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎2
�(𝑋𝑋𝐴𝐴 −

∞
0

∞
0

𝑏𝑏𝐴𝐴)′𝑋𝑋′Ω�Ψ�𝑋𝑋(𝑋𝑋𝐴𝐴 − 𝑏𝑏𝐴𝐴) + 2𝑏𝑏 + 𝜎𝜎2(𝑋𝑋𝐴𝐴 − 𝔹𝔹)′Ω�Ψ�−1(𝑋𝑋𝐴𝐴 − 𝔹𝔹)�� 𝑑𝑑𝑋𝑋𝐴𝐴    
                    

Through simplification we have 
 

𝜋𝜋(𝜎𝜎|𝑋𝑋,𝑦𝑦) ∝ 𝜎𝜎−𝑛𝑛−𝑎𝑎+𝑘𝑘𝑒𝑒𝑒𝑒𝑝𝑝 �− 1
2𝜎𝜎2

�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘)�� (2𝜋𝜋𝜎𝜎2)
𝑘𝑘
2              

𝜋𝜋(𝜎𝜎|𝑋𝑋,𝑦𝑦) ∝ (𝜎𝜎2)−
1
2(𝑛𝑛+𝑎𝑎−2𝑘𝑘)𝑒𝑒𝑒𝑒𝑝𝑝 �− 1

2𝜎𝜎2
�𝜎𝜎�(𝑛𝑛 − 𝑘𝑘)��             

Thus, 
 

�̂�𝑋𝐴𝐴~𝑀𝑀𝑀𝑀𝑀𝑀��̂�𝑋𝐴𝐴  , 𝜎𝜎�2�𝑋𝑋′Ω�Ψ�𝑋𝑋�−1 �1 − �𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′ �𝑅𝑅�𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′�
−1
𝑅𝑅 �  �           

𝜎𝜎�2~𝐼𝐼𝐼𝐼 �a1 −
n
2

, 𝑏𝑏1 + 1
2
∑ (y𝑖𝑖 − 𝑋𝑋𝑋𝑋𝐴𝐴)2n
i=1 + 2 �𝑅𝑅�𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′�

−1
(𝑅𝑅𝑋𝑋𝐴𝐴 − 𝑟𝑟)′(𝑟𝑟 −

𝑅𝑅𝑋𝑋𝐴𝐴)�            

�̌�𝑋𝐴𝐴𝑆𝑆 ~𝑀𝑀𝑀𝑀𝑀𝑀��̂�𝑋𝐴𝐴𝑆𝑆  , 𝜎𝜎�2�𝑋𝑋′Ω�Ψ�𝑋𝑋�−1 �1 − �𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′ �𝑅𝑅�𝑋𝑋′Ω�Ψ�𝑋𝑋�−1𝑅𝑅′�
−1
𝑅𝑅 �  �     

for Restricted Stein-rule estimator 
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2.2 Data Generation Processes 
 
The Monte Carlo simulation algorithm was adopted to examine the small sample properties of the family 
of restricted least squares estimators with intertwining non-spherical disturbances both in classical and 
Bayesian frameworks. Data were generated based on the following parameter of the model: 𝑃𝑃 = 6,𝑛𝑛 =
25, 𝑦𝑦𝑡𝑡 = 𝑋𝑋𝑡𝑡𝑋𝑋 + 𝑢𝑢𝑡𝑡,  𝑡𝑡 = 1, … ,25, where 𝑢𝑢𝑡𝑡  assumed to be generated by intertwine heteroscedastic error 
and AR(1) process where  𝑢𝑢𝑡𝑡 = 𝜌𝜌𝑢𝑢𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 or heteroscedastic error and MA(1) process where 𝑢𝑢𝑡𝑡 =
𝜀𝜀𝑡𝑡 − 𝜌𝜌𝜀𝜀𝑡𝑡−1, 𝜀𝜀𝑡𝑡~𝑀𝑀(0,1), �̂�𝑋 was set as (1.2, 2, 0.8, 0.3, 2.1, 1.1) while seed was set at 1234. 10000 
iterations were set for both classical and Bayesian Monte Carlo simulation. 𝜌𝜌 was set at 
−0.8,−0.5,−0.3, 0, 0.3, 0.5, 0.8 for both AR(1) process and MA(1) process. Heteroscedasticity was of 
four categories: 𝛿𝛿 = 0 No heteroscedasticity, 𝛿𝛿 = 0.3 mild heteroscedasticity, 𝛿𝛿 = 0.5 moderately 
heteroscedasticity, and 𝛿𝛿 = 1 severe Heteroscedasticity. The restriction of parameters were set as 

 

𝑅𝑅 = �
0 1 0 −1 0 0
0 0 1 0 1 0
0 0 0 0 0 1

� 

𝑟𝑟 = (0 1 0)  where 𝑋𝑋1 − 𝑋𝑋3 = 0, 𝑋𝑋2 + 𝑋𝑋4 = 1 and 𝑋𝑋5 = 0. 

The relative efficiency was computed for each estimator as 𝐴𝐴�𝛽𝛽
�𝑅𝑅�

𝐴𝐴�𝛽𝛽�𝑅𝑅𝑅𝑅�
, the value of relative efficiency 

greater than one implies that �̂�𝑋𝐴𝐴𝑆𝑆 is more efficient compared with �̂�𝑋𝐴𝐴.  All computations were carried 
out using R (2022) Statistical software. The dataset class contained the posterior sample for the model 
parameters. 
 
3. Quadratic Loss and Risk Function 
 
Quadratic weight loss and risk function that incorporated both error structures were used to evaluate the 
performances of classical, Bayes estimate and posterior mean. Let 𝐿𝐿��̂�𝑋𝐴𝐴 − 𝑋𝑋� = ��̂�𝑋𝐴𝐴 − 𝑋𝑋�𝑄𝑄��̂�𝑋𝐴𝐴 − 𝑋𝑋� 
be quadratic or square error loss function where �̂�𝑋𝐴𝐴 is the restricted parameters, 𝑋𝑋 is the prior mean, and 
Q is the ∑ �̂�𝑋𝐴𝐴

𝛽𝛽𝑅𝑅
𝑖𝑖=1  weight of loss function. For the comparison of �̂�𝑋𝐴𝐴 , and  �̂�𝑋𝐴𝐴𝑆𝑆 in both classical and 

Bayesian paradigms, both were compared with the weighted square error loss function and it’s 
associated relative efficiency, to capture small sample properties. 
 
4. Data Analysis, Results and interpretation 
 

Table 1.   Restricted Stein-rule estimators with AR(1) process and heteroscedasticity 
 Autoreggressive model (1) process  
𝜌𝜌 𝛿𝛿 RLS RLSTein BRLSPost BRLSBayes BRLSTeinPost BRLSTeinBayes 

-0.8 0 11.95386 11.94617 11.76803 11.76843 11.76712 11.76682 
-0.5 0 11.40917 11.41245 11.14193 11.14237 11.14090 11.14056 
-0.3 0 11.02323 11.02693 10.73144 10.73188 10.73039 10.73004 

0 0 10.62719 10.62887 10.32334 10.32374 10.32235 10.32201 
0.3 0 10.30029 10.30007 10.00582 10.00615 10.00498 10.00467 
0.5 0 10.18246 10.18213 9.88554 9.88584 9.88481 9.88453 
0.8 0 10.17754 10.18209 9.78604 9.78637 9.78531 9.78504 
-0.8 0.3 10.08097 10.06767 9.75367 9.75422 9.75246 9.75205 
-0.5 0.3 10.89463 10.89858 10.47550 10.47623 10.47377 10.47319 
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-0.3 0.3 10.62769 10.63281 10.16825 10.16898 10.16648 10.16588 
0 0.3 10.38082 10.38308 9.90666 9.90733 9.90499 9.90442 

0.3 0.3 10.23447 10.23385 9.77023 9.77078 9.76881 9.76828 
0.5 0.3 10.10466 10.10371 9.63134 9.63184 9.63009 9.62962 
0.8 0.3 10.17370 10.17961 9.55151 9.55205 9.55028 9.54982 
-0.8 0.5 10.44131 10.42244 10.08665 10.08748 10.08477 10.08413 
-0.5 0.5 10.36106 10.36522 9.77913 9.78012 9.77672 9.77594 
-0.3 0.5 10.33580 10.34205 9.71216 9.71318 9.70960 9.70877 

0 0.5 10.20251 10.20509 9.56386 9.56480 9.56142 9.56060 
0.3 0.5 10.13022 10.12901 9.50297 9.50376 9.50088 9.50012 
0.5 0.5 10.24925 10.24750 9.59190 9.59262 9.59006 9.58935 
0.8 0.5 9.67637 9.68216 8.84302 8.84381 8.84118 8.84051 
-0.8 1 9.27073 9.21880 8.43962 8.44199 8.43283 8.43101 
-0.5 1 10.24926 10.25441 9.10058 9.10333 9.09230 9.09005 
-0.3 1 10.96178 10.97710 9.71060 9.71348 9.70181 9.69933 

0 1 10.36995 10.37623 9.02841 9.03092 9.02065 9.01834 
0.3 1 9.66596 9.66111 8.41505 8.41708 8.40889 8.40689 
0.5 1 9.08793 9.07847 7.87155 7.87330 7.86632 7.86450 
0.8 1 9.59359 9.60327 7.77654 7.77875 7.77054 7.76861 

 
The study observed the dominance of Bayesian restricted and restricted Stern-rule estimators over 

classical restricted and Stein-rule estimators under weighted quadratic loss functions. A Monte Carlo 
simulation study was used to study the behaviour of the Bayesian and classical restricted Stein-rule 
estimators with respect to the intertwining of heteroscedastic and autocorrelated AR(1) process 
disturbance errors in small sample properties. When 𝜌𝜌 is increasing monotonically, the risk function is 
decreasing, this is due to the intertwining of 𝜌𝜌 with 𝛿𝛿.   

Comparing classical restricted least squares (RLS) and restricted Stein-rule least squares 
(RSRLS) with intertwine autocorrelated and heteroscedastic disturbance errors using loss and risk 
functions, it was observed that restricted Stein-rule least squares outperformed restricted least squares 
when 𝜌𝜌 are -0.8, 0.3 and 0.5 whereas RLS outperformed RSRLS when 𝜌𝜌 are -0.5, -0.3,0, and 0.8, all at 
scales of heteroscedasticity. It was observed in the study that Bayesian Restricted Stein-rule Bayes 
Estimate (BRSRBE) outperformed Bayesian Restricted Stein-rule Posterior Mean (BRSRPM), 
Bayesian Restricted Posterior Mean (BRPM), and Bayesian Restricted Bayes Estimate (BRBE) in this 
order across all the 𝜌𝜌 and scale of heteroscedasticity. The study observed the superior performances of 
the Bayesian paradigm over the classical family of restricted least squares. It was observed that the 
Bayesian family of restricted least squares both posterior mean and Bayes estimate outperformed the 
classical family of restricted least squares when there exists intertwining of AR(1) autocorrelated and 
heteroscedastic disturbances errors. 
 

Table 2. Relative Efficiency of Restricted Stein-rule estimators with AR(1) process and 
heteroscedasticity 

𝜌𝜌 𝛿𝛿 RLSTein BRLSPost BRLSBayes BRLSTeinPost BRLSTeinBayes 
-0.8 0 1.000644 1.015791 1.015757 1.01587 1.015896 
-0.5 0 0.999713 1.023985 1.023945 1.02408 1.024111 
-0.3 0 0.999664 1.02719 1.027148 1.027291 1.027324 

0 0 0.999842 1.029433 1.029393 1.029532 1.029566 
0.3 0 1.000021 1.02943 1.029396 1.029516 1.029548 
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0.5 0 1.000032 1.030036 1.030005 1.030112 1.030141 
0.8 0 0.999553 1.040006 1.039971 1.040084 1.040112 
-0.8 0.3 1.001321 1.033557 1.033498 1.033685 1.033728 
-0.5 0.3 0.999638 1.040011 1.039938 1.040182 1.04024 
-0.3 0.3 0.999518 1.045184 1.045109 1.045366 1.045427 

0 0.3 0.999782 1.047863 1.047792 1.048039 1.0481 
0.3 0.3 1.000061 1.047516 1.047457 1.047668 1.047725 
0.5 0.3 1.000094 1.049144 1.049089 1.04928 1.049331 
0.8 0.3 0.999419 1.06514 1.06508 1.065278 1.065329 
-0.8 0.5 1.001811 1.035161 1.035076 1.035354 1.03542 
-0.5 0.5 0.999599 1.059507 1.0594 1.059769 1.059853 
-0.3 0.5 0.999396 1.064212 1.064101 1.064493 1.064584 

0 0.5 0.999747 1.066777 1.066673 1.06705 1.067141 
0.3 0.5 1.000119 1.066006 1.065917 1.06624 1.066325 
0.5 0.5 1.000171 1.068532 1.068452 1.068737 1.068816 
0.8 0.5 0.999402 1.094238 1.09414 1.094466 1.094549 
-0.8 1 1.005633 1.098477 1.098169 1.099362 1.099599 
-0.5 1 0.999498 1.126221 1.12588 1.127246 1.127525 
-0.3 1 0.998604 1.128847 1.128512 1.12987 1.130158 

0 1 0.999395 1.148591 1.148272 1.149579 1.149873 
0.3 1 1.000502 1.148652 1.148374 1.149493 1.149766 
0.5 1 1.001042 1.154529 1.154272 1.155296 1.155564 
0.8 1 0.998992 1.233658 1.233307 1.23461 1.234917 

  

In Table 2 above, the relative efficiency was computed for each estimator as 𝐴𝐴�𝛽𝛽
�𝑅𝑅�

𝐴𝐴�𝛽𝛽�𝑅𝑅𝑅𝑅�
, the value of 

relative efficiency greater than one implies that �̂�𝑋𝐴𝐴𝑆𝑆 is more efficient and preferred to �̂�𝑋𝐴𝐴, this occurred 
across  board, the study observed keenly that the Bayesian family of restricted least squares estimators 
are more efficient and preferred to the classical family of restricted least squares estimators with 
autocorrelated  AR(1) process heteroscedastic disturbance errors. 
 

Table 3: Restricted Stein-rule estimators with MA(1) process and heteroscedasticity 
 Moving Average  
𝜌𝜌 𝛿𝛿 RLS RLSTein BRLSPost BRLSBayes BRLSTeinPost BRLSTeinBayes 

-0.8 0 11.59345 11.59000 11.34210 11.34271 11.34066 11.34020 
-0.5 0 11.08002 11.07910 10.85084 10.85123 10.84992 10.84962 
-0.3 0 10.85754 10.85759 10.62377 10.62415 10.62288 10.62258 

0 0 10.62719 10.62887 10.32334 10.32374 10.32235 10.32201 
0.3 0 10.43056 10.43392 9.91997 9.92046 9.91871 9.91826 
0.5 0 10.38246 10.38662 9.59600 9.59662 9.59437 9.59378 
0.8 0 10.13854 10.14206 9.16135 9.16247 9.15821 9.15708 
-0.8 0.3 11.52695 11.52137 11.04155 11.04253 11.03927 11.03852 
-0.5 0.3 11.11431 11.11282 10.73870 10.73933 10.73719 10.73669 
-0.3 0.3 10.86169 10.86167 10.49059 10.49119 10.48912 10.48862 

0 0.3 10.38082 10.38308 9.90666 9.90733 9.90499 9.90442 
0.3 0.3 10.28248 10.28752 9.49084 9.49167 9.48861 9.48783 
0.5 0.3 10.32635 10.33275 9.09756 9.09863 9.09456 9.09351 
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0.8 0.3 11.06234 11.06848 9.69412 9.69587 9.68889 9.68703 
-0.8 0.5 10.94189 10.93463 10.03172 10.03306 10.02855 10.02751 
-0.5 0.5 11.67814 11.67675 11.19570 11.19661 11.19352 11.19278 
-0.3 0.5 10.60190 10.60125 10.07790 10.07875 10.07582 10.07512 

0 0.5 10.20251 10.20509 9.56386 9.56480 9.56142 9.56060 
0.3 0.5 10.22358 10.23013 9.15677 9.15798 9.15339 9.15225 
0.5 0.5 10.44728 10.45579 8.75034 8.75188 8.74570 8.74417 
0.8 0.5 10.33556 10.34405 8.19577 8.19844 8.18732 8.18444 
-0.8 1 10.28271 10.26285 8.13586 8.13898 8.12748 8.12503 
-0.5 1 10.27316 10.26809 8.89410 8.89610 8.88887 8.88723 
-0.3 1 10.27946 10.27710 9.20662 9.20870 9.20084 9.19904 

0 1 10.36995 10.37623 9.02841 9.03092 9.02065 9.01834 
0.3 1 10.22061 10.23517 7.88021 7.88349 7.86854 7.86537 
0.5 1 10.14051 10.15775 6.68047 6.68431 6.66515 6.66143 
0.8 1 11.05179 11.06888 7.36278 7.36911 7.33860 7.33199 

 
In Table 3 above where MA (1) process intertwined with heteroscedastic, the outcome of the 

study is in line with the works of Oloyede (2022) and Chaturvedi et al. (2021). Comparing classical 
restricted least squares (RLS) and restricted Stein-rule least squares (RSRLS) with interwine 
autocorrelated and heteroscedastic disturbance errors using loss and risk functions, it was observed that 
restricted Stein-rule least squares outperformed restricted least squares when 𝜌𝜌 are -0.8, and -0.5 
whereas RLS outperformed RSRLS when 𝜌𝜌 are  -0.3,0, 0.3,0.5 and 0.8,  at 0 scales of heteroscedasticity. 
But in 0.3 to 1 scales heteroscedasticity considered in the study, restricted Stein-rule least squares 
outperformed restricted least squares when 𝜌𝜌 are -0.8, -0.5 and -0.3 whereas RLS outperformed RSRLS 
when 𝜌𝜌 are 0, 0.3,0.5 and 0.8. Bayesian paradigm followed the same pattern as AR(1) process 
heteroscedastic disturbance errors. The study observed the superior performances of Bayesian paradigm 
over classical family of restricted least squares. It was observed that Bayesian family of restricted least 
both posterior mean and Bayes estimate out performed classical family of restricted least squares when 
there exist interwine of autocorrelated MA(1) process and heteroscedastic disturbances errors. 
 

Table 4: Relative Efficiency of Restricted Stein-rule estimators with MA(1) process and 
heteroscedasticity 

𝜌𝜌 𝛿𝛿 RLSTein BRLSPost BRLSBayes BRLSTeinPost BRLSTeinBayes 
-0.8 0 1.000298 1.022161 1.022106 1.022291 1.022332 
-0.5 0 1.000083 1.021121 1.021084 1.021208 1.021236 
-0.3 0 0.999995 1.022004 1.021968 1.02209 1.022119 

0 0 0.999842 1.029433 1.029393 1.029532 1.029566 
0.3 0 0.999678 1.051471 1.051419 1.051604 1.051652 
0.5 0 0.999599 1.081957 1.081887 1.082141 1.082207 
0.8 0 0.999653 1.106664 1.106529 1.107044 1.10718 
-0.8 0.3 1.000484 1.043961 1.043869 1.044177 1.044248 
-0.5 0.3 1.000134 1.034977 1.034917 1.035123 1.035171 
-0.3 0.3 1.000002 1.035375 1.035315 1.03552 1.035569 

0 0.3 0.999782 1.047863 1.047792 1.048039 1.0481 
0.3 0.3 0.99951 1.083411 1.083316 1.083666 1.083755 
0.5 0.3 0.999381 1.135068 1.134935 1.135443 1.135574 
0.8 0.3 0.999445 1.141139 1.140933 1.141755 1.141974 
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-0.8 0.5 1.000664 1.090729 1.090584 1.091074 1.091187 
-0.5 0.5 1.000119 1.043092 1.043007 1.043295 1.043364 
-0.3 0.5 1.000061 1.051995 1.051906 1.052212 1.052285 

0 0.5 0.999747 1.066777 1.066673 1.06705 1.067141 
0.3 0.5 0.99936 1.116505 1.116358 1.116917 1.117056 
0.5 0.5 0.999186 1.193928 1.193718 1.194562 1.194771 
0.8 0.5 0.999179 1.261085 1.260674 1.262386 1.26283 
-0.8 1 1.001935 1.263875 1.26339 1.265178 1.26556 
-0.5 1 1.000494 1.155053 1.154794 1.155733 1.155946 
-0.3 1 1.00023 1.116529 1.116277 1.117231 1.117449 

0 1 0.999395 1.148591 1.148272 1.149579 1.149873 
0.3 1 0.998577 1.296997 1.296458 1.298921 1.299444 
0.5 1 0.998303 1.517934 1.517062 1.521423 1.522272 
0.8 1 0.998456 1.501035 1.499746 1.505981 1.507338 

 

In Table 4, similar to table 4.2, the relative efficiency was computed for each estimator as 𝐴𝐴�𝛽𝛽
�𝑅𝑅�

𝐴𝐴�𝛽𝛽�𝑅𝑅𝑅𝑅�
, 

the value of relative efficiency greater than one implies that �̂�𝑋𝐴𝐴𝑆𝑆 is more efficient and preferred to �̂�𝑋𝐴𝐴, 
this occurred across board, the study observed keenly that Bayesian family of restricted least squares 
estimators are more efficient and preferred to the classical family of restricted least squares estimator 
with autocorrelated  MA(1) process heteroscedastic disturbance errors. 
 
5. Conclusion 
 
The study introduced a novel Bayesian restricted Stein-rule with intertwined autocorrelated AR (1), 
MA(1), and heteroscedastic disturbance errors,  and compared it with the classical family of restricted 
least squares. The study observed the outperformance and relative efficiency of the Bayesian family of 
restricted least squares estimators over the classical family of restricted least squares. The study 
observed the superior performances of the Bayesian paradigm over the classical family of restricted 
least squares. It was observed that the Bayesian family of restricted least squares both posterior mean 
and Bayes estimate outperformed the classical family of restricted least squares when there exists 
intertwining of AR(1)/MA(1) autocorrelated and heteroscedastic disturbances errors. 

It is recommended that whenever analyst and researcher having data and/or model with dual 
disturbance errors (autocorrelated and heteroscedastic errors), they should consider Bayesian restricted 
framework, this is due to its probabilistic nature of Bayesian inference. 
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