Computer Simulation of a Hexagonal Assembly for a Branched Chain Glycolipid

Main Article Content

Teoh T. Chong
, Thorsten Heidelbergl
Richard A. Bryce

Abstract

Glycolipids are surfactants that assemble in ordered structures both in the presence and


absence of a solvent, e.g. water. Branched chain glycosides with long chain length display stable columnar assemblies, which are commonly hexagonal packed. We here report on a molecular dynamics simulation study of a Guerbet-type maltoside involving a long symmetrically branched chain alcohol. A hexagonal columnar model-assembly involving 224 glycolipid and 560 water molecules with a total of almost 27,000 atoms was constructed and monitored over a period of 5 ns at 300 K using Amber. The simulation indicates stability for the hexagonal structure and classifies the water as bound water.

Downloads

Article Details

How to Cite
T. Chong, T., Heidelbergl, , T., & A. Bryce, R. (2008). Computer Simulation of a Hexagonal Assembly for a Branched Chain Glycolipid. Malaysian Journal of Science, 27(2), 75–82. Retrieved from http://ijie.um.edu.my/index.php/MJS/article/view/9210
Section
Original Articles